An international study has discovered that multiple genes contribute to risk for schizophrenia and appear to function in pathways related to transmission of signals in the brain and immunity.

The study led by Virginia Commonwealth University School of Pharmacy researchers used a comprehensive and unique approach to robustly identify genes and biological processes conferring risk for schizophrenia.
The researchers first used 21,953 subjects to examine over a million genetic markers. They then systematically collected results from other kinds of biological schizophrenia studies and combined all these results using a novel data integration approach.
The most promising genetic markers were tested again in a large collection of families with schizophrenia patients, a design that avoids pitfalls that have plagued genetic studies of schizophrenia in the past. The genes they identified after this comprehensive approach were found to have involvement in brain function, nerve cell development and immune response.
"Now that we have genes that are robustly associated with schizophrenia, we can begin to design much more specific experiments to understand how disruption of these genes may affect brain development and function," said principal investigator Edwin van den Oord, Ph.D., professor and director of the Center for Biomarker Research and Personalized Medicine in the Department of Pharmacotherapy and Outcomes Science at the VCU School of Pharmacy.
"Also, some of these genes provide excellent targets for the development of new drugs," he said.
Advertisements
TCF4 works by switching on other genes in the brain. McClay and colleagues are conducting a National Institutes of Health-funded study to determine all genes that are under the control of TCF4. By mapping the entire network, they aim to better understand how disruptions to TCF4 increase risk for schizophrenia.
Advertisements
The study was published online in the April issue of JAMA Psychiatry, the JAMA Network journal.
Source-ANI