
Amniotic fluid samples from 50 healthy women undergoing planned caesarean deliveries found to contain bacterial DNA in nearly all (36/43 viable samples). All 50 newborns had bacteria in their first poop, according to the new study done by the australian researchers.
Published in Frontiers in Microbiology, the study used uniquely rigorous contamination controls to confirm that exposure to bacteria begins in the womb - and could help to shape the developing fetal immune system, gut and brain.
Read More..
The not-so-sterile womb
It is important to conclusively determine whether the healthy womb harbors bacteria, say the researchers, because this 'fetal microbiome' would likely have a significant impact on the developing immune system, gut, and brain.
The fetal microbiome
To settle the issue, Stinson and colleagues took strict measures to eliminate bacterial contamination when analyzing amniotic fluid and meconium samples. For example, they purified the reagents used to amplify traces of bacterial DNA in the samples, by adding an enzyme which digests DNA remnants from biomanufacturing.
"Despite these measures, we still found bacterial DNA in almost all samples," reports Stinson.
"Interestingly, the meconium microbiome varied hugely between individual newborns. The amniotic fluid microbiome for the most part contained typical skin bacteria, such as Propionibacterium acnes and Staphylococcus species."
A developmental role
But what might these bacteria be doing in the womb?
None of these women or their babies had any sign of infection. In fact, the fetal microbiome may prove to be a beneficial regulator of early development.
"We found that levels of important immune modulators in meconium and inflammatory mediators in amniotic fluid varied according to the amount and species of bacterial DNA present. This suggests that the fetal microbiome has the potential to influence the developing fetal immune system."
There is one small caveat - technically, the DNA in these samples could have come from bacteria that were already dead in the womb.
"Here we've proven that bacterial DNA is present in the womb, but the next step will be to show whether these are alive and constitute a true microbiome," concludes Stinson.
Source: Eurekalert
Advertisement
|
Recommended Readings
Latest Women Health News




