The International Agency for Research on Cancer places possible carcinogens into four groups, depending on their degree of risk. Group 1, labeled "carcinogenic to humans", includes 120 known carcinogens such as benzene, radon and asbestos. It also includes the high molecular weight PAH benzo[a]pyrene or B[a]P, which has become known as one of the standard carcinogenic components associated with combustion. However, most LMW PAHs that are known components of combustion are not listed in Group 1. For example, the LMW PAHs fluoranthene and anthracene are currently listed in Group 3, titled "not classifiable as to its carcinogenicity to humans." Other LMW PAHs found in combustion such as 1-methylanthracene are not even listed.
‘Mixes of chemicals that can cause cancer are seen in many industrial processes such as coal gasification, paving and roofing work, vehicle emissions and cigarette smoke, among others.’
In this study, Bauer and colleagues added fluoranthene and 1-methylanthracene to B[a]P and introduced the mixture to mouse cells. Of course, B[a]P alone was enough to cause cellular changes associated with the development of cancer. However, the researchers observed that these cellular changes were dramatically magnified when B[a]P was combined with fluoranthene and 1-methylanthracene, clearly indicating that these previously imprecisely categorized chemicals were acting as co-carcinogens with B[a]P.
The tested combination of PAHs (and many more like it) is not a hypothetical construct of the lab. Mixes of B[a]P with LMW PAHs are seen in many industrial processes such as coal gasification, paving and roofing work, vehicle emissions and cigarette smoke, among others.
"The goal is to prevent cancers associated with exposure to mixtures of these chemicals, through increased awareness leading to protective behaviors or to additional regulation of these chemicals," Bauer says.
The group's next step is to explore carcinogenicity of this and other combinations of LMW PAHs in human cells.
Source: Eurekalert