Medindia LOGIN REGISTER
Medindia
Advertisement

MIT Scientists Create 3-D Images of Living Cells

by Medindia Content Team on October 6, 2007 at 3:22 PM
MIT Scientists Create 3-D Images of Living Cells

Scientists at the Massachusetts institute of Technology have created three-dimensional images of living cells with the help of a technique which is similar to CAT scanning.

Instead of using chemicals or dyes to freeze the cell to obtain structural information, as is done in other methods, the new approach simply uses laser light, which leaves the cell intact and alive.

Advertisement

Since the 3-D views provide a much more detailed look at how cells function, they may offer new insights into the cellular changes that accompany a disease. These images may also led to the development of better methods for diagnosing and treating disease.

"Pathologists look at tissue samples to diagnose disease. They study the cells in the sample and the changes they undergo as disease progresses," Discovery News quote Michael Feld, professor of physics at the Massachusetts institute of Technology and director of its George R. Harrison Spectroscopy Laboratory, as saying.
Advertisement

For creating a three-dimensional image, the scientists collect over one hundred two-dimensional images of the cell snapped at different angles. They use a computer to combine the 2-D images into a single 3-D view.

Feld revealed that it took about 10 seconds for his team to produce a 3-D image, when they first attempted the technique. He further said that later the image production time was reduced to about 1/10th of a second.

"Wow they have done something really neat here. In the past what people have had to do is take a 2-D image and rotate the sample and then take another 2-D image. It's usually pretty complicated," said Mark Bates, a researcher in applied physics at Harvard University.

"They (Feld and his team) didn't have to move the sample or change their focal plane. All they did was scan one laser with respect to another and reconstructed an entire 3-D image," he added.

Using the new approach, Feld and his colleagues have discerned the nucleus and nucleolus of cervical cancer cells and other cell types, as well as unidentified organelles in the cytoplasm.

Currently, structures several hundred nanometers across can be discerned. The researchers are working to improve this resolution to 150 nanometers.

Source: ANI
LIN /J
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Exploring How Hearing Impairment Shapes Dementia Risk
Study reveals a correlation between hearing impairment and distinct brain region variances, contributing to dementia.
Coffee and its Role in Neurodegenerative Disorders
Financial impact of caring for individuals with neurodegenerative disorders reaches hundreds of billions annually in the United States.
Healthcare Industry Struggles With Tech Skills Shortage
Experts emphasize that addressing the skills gap demands immediate attention and innovative solutions, including education, re-training, and significant time investment.
Nano-Probes Uncover Cellular Reactions to Pressure
New study unveiled the cells' ability to adapt in responses and potential implications for conditions such as diabetes and cancer.
Brain Cells to Taste Buds Monitor Mindful Eating
Brainstem recording of tastebud neurons reveals the process of overindulgence of food, opening new avenues for weight loss drugs.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

MIT Scientists Create 3-D Images of Living Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests