About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Microscopic Waves Towards Invading Microbes Offer Vital Clues for Cancer Treatment

by VR Sreeraman on August 14, 2007 at 2:19 PM
Font : A-A+

Microscopic Waves Towards Invading Microbes Offer Vital Clues for Cancer Treatment

Scientists have discovered that torrents of microscopic waves propel white blood cells toward invading microbes. The discovery - recorded on videotape -- holds the potential for better understanding and treatment of cancer and heart disease.

Visible only under a very high-resolution light microscope, the dynamic waves are made of a signaling protein that directs cell movement. This protein and a second key player were already known to trigger cells to move, but their interaction to generate the self-sustaining waves has now been revealed.

Advertisement

"Seeing the wavelike dynamics of this protein, Hem-1, for the first time was easily the most instantly thrilling and illuminating finding in my scientific career," says Orion Weiner, PhD, of the University of California, San Francisco, who led the scientific team. "It immediately suggested how this protein might be organizing cell movement — an idea that our subsequent experiments validated.

"We never expected to see this sort of complex behavior within cells, but in retrospect it is an absolutely ingenious way to organize cell movement. We're getting our first glimpses that take us beyond knowing that this protein is important for cell motility to learning how it might organize the complex choreography of cell movement."
Advertisement

The videotape of the unsuspected action shows wave upon wave advancing like a series of exploding fireworks. The novel behavior can be viewed at cvri.ucsf.edu/~weiner.

The research findings are reported in the August 13, 2007 online edition of the journal "Public Library of Science (PLoS) Biology." Lead author is Weiner, who is assistant professor of biochemistry at UCSF.

Because the same kind of components scrutinized in the new research also drive cancer cell metastasis, the finding may lead to strategies to block cancer growth. Similarly, faulty regulation of white blood cell movement plays a role in heart attack - another promising target for applying the new insights of the regulation of cell movement, the authors say.

White blood cells, or neutrophils, are the body's first line of defense against potentially harmful microbes, and are one of the swiftest cells in the body. The wave action that speeds them along is generated by the same kind of three-part circuit that fires electrical signals along a neuron or prods the heart to beat, the researchers observe.

Videotaping allowed the scientists to watch as wave upon wave of the Hem-1 protein push neutrophils toward a chemical signal made by invading microbes. The researchers fluorescently tagged Hem-1 to view its dynamic propulsive power under the microscope.

Self-generating waves of Hem-1 control the pattern of assembly of building blocks of a second protein, actin. This protein physically contacts the cell membrane and prods it forward. But actin is not only an output of Hem-1 action; it also appears to eliminate the Hem-1 that has assembled it, the new research shows.

The cell-propelling circuit contains a third component that makes it self-sustaining. The researchers found evidence that before each Hem-1 protein is eliminated, it recruits an additional Hem-1 right "next door." As each Hem-1 succumbs, a new one appears - but only on one side.

Weiner thinks the structure of actin physically blocks Hem-1 from recruiting its daughter Hem-1 on one side, so Hem-1 is sequentially added only in one direction. This determines the direction of cell movement.

Weiner likens it to a Lego tower on its side. "If you kept adding blocks to one end and removing them from the other, you would have a moving tower that was the same size but kept adding new material. This is very similar to what is going on in a Hem-1 wave," he says.

The Hem-1 recruitment assures the cycle will continue. The cycle, or circuit, of activation, recruitment and inhibition, as it is called, can continue without "orders" from another part of the cell, the scientists report. They think that the cycle of Hem-1 recruitment and annihilation likely produces the series of waves seen under the microscope.

"One of the things that I find fascinating about these waves is how relatively simple patterns of protein interaction can generate very complex behaviors," says Weiner. "Evolution has found the same solution to generating waves again and again even with completely different molecules, and at different scales of space and time -- encouraging for those of us who want to uncover general organizing principles in biology."

Weiner is an investigator in both the UCSF Cardiovascular Research Institute and the California Institute for Quantitative Biosciences, or QB3, headquartered at UCSF.

Weiner initiated the research as a postdoctoral fellow in the lab of Marc Kirschner, PhD, professor and chair of systems biology at Harvard Medical School. Kirschner is a co-author on the paper.

The cycle the scientists studied is very similar in concept to the circuit that generates neuronal conduction, the beating of the heart, and many other waves in biology, according to Weiner.

"All of these use a self-activating signal that plants the seeds for its own destruction, even while it is progressing. This results in a wave that moves undiminished because of the self-activation, and in one direction, because of the inhibition it leaves in its wake," he says.

The scientists observed the Hem-1 activation of actin assembly and actin's inhibition of Hem-1 accumulation. The "recruitment" component was not directly observed, but is consistent with their observations and experiments.

In the research, the team used the fluorescently tagged Hem-1 to determine whether the protein participated in the wave action, or was the wave itself. Using optical tricks to label specific pools of Hem-1, they found that molecules of Hem-1 don't move, but pass information between molecules to generate a wave.

The research is now focusing on how external signals influence this wave generator to guide the cells. They also want to learn if the wave action they have discovered in neutrophils also controls movement and shapes changes in other cells and organisms.

Source: UCSF News Service


LIN/J
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
High-intensity Ultrasound Helps to Wipe Out Cancer Cells Anywhere in the Body
A new study has found that an intense form of ultrasound that shakes a tumor until its cells start ....
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use