About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Method Used By Plants To Adapt to Environments Throughout the World Unveiled By Hidden Layer of Genome

by Rukmani Krishna on March 8, 2013 at 10:48 PM
Font : A-A+

 Method Used By Plants To Adapt to Environments Throughout the World Unveiled By Hidden Layer of Genome

Patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases were identified by scientists at the Salk Institute for Biological Studies.

Published March 6 in Nature, the findings show that in addition to genetic diversity found in plants throughout the world, their epigenomic makeup is as varied as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments.

Advertisement

Epigenomic modifications alter gene expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes control the cellular machinery. These changes occur not only in plants, but in humans as well.

"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Biology Laboratory and holder of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time."
Advertisement

By understanding epigenomic alterations in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought. That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator.

Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed methylation patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape Verde Islands. Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment.

"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Spirituality and Mental Health
Health Benefits of Sea Buckthorn
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.


Recommended Reading
Research Says Genomes Reveal Bacterial Lifestyles
New research suggests that sampling just a few genes can reveal not only the "lifestyle" of marine ....
Modern-day Genomes Help in Understanding Development of Organisms
Modern day genomes have been used by MIT scientists to reconstruct and understand the development ....
Broken Genomes Linked to Breast Cancers
A research team has published the first ever detailed search of breast cancer genomes to uncover ......
New Way of Precisely Altering Genomes of Cells Developed
CAMBRIDGE, MA -- Researchers at MIT, the Broad Institute and Rockefeller University have developed ....

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use