About Careers MedBlog Contact us

Mechanism of Antiarrhythmic Drugs Decoded

by Reshma Anand on March 1, 2016 at 11:22 AM
Font : A-A+

Mechanism of Antiarrhythmic Drugs Decoded

For ages, people suffering from atrial fibrillation (AF) have been prescribed with an antiarrhythmic drug. But the drug poses an increased risk of stroke, chest pains and even heart failure. Till now, the exact mechanism of the drug and the steps that can be taken to mitigate its effects remain unknown.

Now, researchers from the Weill Cornell Medical College in New York and the University of Arkansas have new insight into how these drugs work. They tested two types of antiarrhythmic drugs: multi-target drugs, which alter the function of many different cell proteins at once, and single-target drugs, which are designed to affect only one protein.


The researchers found that the multi-target drugs, which are the most commonly prescribed drugs to treat AF and are considered the most efficacious, may work by changing properties of the cell membrane, like elasticity, curvature and thickness.

"Generating and propagating the electrical impulse that controls heartbeat requires a delicate balance in activities of multiple membrane-embedded proteins. The multiple signaling pathways involved in heartbeat could explain why multi-target drugs could be particularly beneficial in treating conditions such as AF and why the cell membrane may play a key role in their regulation," said Radda Rusinova, a researcher in the Department of Physiology and Biophysics at Weill Cornell Medical College in New York.

Amiodarone, one of the multi-target drugs that Rusinova and her colleagues tested, was initially classified as an antiarrhythmic that prolongs repolarization, which is a "resetting" of the electrical potential across a cell membrane before it can transmit another electrical signal. But other modes of action for the drug were quickly discovered, Rusinova said, and it is now known that amiodarone alters the function of numerous membrane proteins, with no clear mechanism for how it does so.

Rusinova and her colleagues found evidence that a previously unknown membrane-mediated mechanism may be involved in the way the drug changes function of cell membrane-embedded proteins. The researchers used a simplified lipid bilayer with a class of proteins called gramicidin channels embedded in it as a model cell membrane. The gramicidins act as a sort of spy for the researchers. By observing the activity of the gramicidins, the researchers can uncover information about the state of the bilayer.

By using the gramicidin "spies," Rusinova and her colleagues found that amiodarone, along with another multi-target antiarrhythmic drug called dronedarone, increase the elasticity of the bilayer. The elasticity of the bilayer, in turn, affects the function of the proteins embedded within it, similar to the way a changing sea affects all the boats that float on it.

Importantly, the researchers found that this bilayer change occurred within the same range of concentrations of the drug known to be therapeutic. For the single-target antiarrhythmic drugs the team tested, one had almost no effect on the bilayer properties and the other only had an effect at concentrations outside the therapeutic range.

"The key conclusion of this work is that the contribution of bilayer effects on a drug's therapeutic profile is not trivial and has to be carefully examined," Rusinova said.

Rusinova notes the finding could have implications beyond antiarrhythmic drugs. "Our work offers a general mechanism for how drugs alter the function of multiple membrane proteins: drug-induced alterations in lipid bilayer properties result in general changes in membrane protein function."

Source: Eurekalert

News A-Z
What's New on Medindia
Get Involved and Stand Up for Human Rights on Human Rights Day 2022
Coronary Artery Bypass Grafting
Macronutrients Calculator for Weight Loss
View all
Recommended Reading
News Archive
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Drugs Banned in India 

Most Popular on Medindia

Sinopril (2mg) (Lacidipine) Daily Calorie Requirements Indian Medical Journals Selfie Addiction Calculator Post-Nasal Drip Find a Doctor Noscaphene (Noscapine) Find a Hospital A-Z Drug Brands in India Nutam (400mg) (Piracetam)
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Mechanism of Antiarrhythmic Drugs Decoded Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests