About My Health Careers Internship MedBlogs Contact us

Mechanism Behind How Amyloid Plaques Damage Brain Cells in Alzheimer's Identified

by Rajashri on August 4, 2008 at 2:30 PM
Font : A-A+

 Mechanism Behind How Amyloid Plaques Damage Brain Cells in Alzheimer's Identified

The mechanism behind how amyloid plaques associated with Alzheimer's disease actually damage neurons has been identified by researchers.

Making use of an advanced imaging technique, researchers at the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) found that levels of intracellular calcium are significantly elevated in neurons close to plaques in the brains of an Alzheimer's mouse model.


They also demonstrated how this calcium overload can interfere with the transmission of neuronal signals and activate a pathway leading to further cell damage.

"While a connection between calcium regulation and Alzheimer's pathology has been predicted for many years, this is the first direct observation of a connection between amyloid plaques, calcium accumulation and a neurodegenerative mechanism in the most relevant animal model," said Brian Bacskai, PhD, of MGH-MIND, the study's senior author.

Calcium ions have a vital role to play in transmitting signals from one neuron to another. This study was designed to find out if it was possible to measure changes in brain function, reflected by alterations in calcium levels that may be occurring in response to plaque formation.

The researchers combined an advanced imaging technique they developed to measure structural changes in the brain, with the use of a fluorescent probe that reports cellular calcium levels.

They then showed that dendrites, which receive nerve signals, were almost six times more likely to have excessive levels of calcium in transgenic mice with amyloid plaques than in normal mice. Those excess calcium levels were even higher - nearly doubling - in neurons adjacent to plaques. Later, they found how this calcium overload probably interferes with neuronal communication.

Normally specific signals being transmitted are reflected by distinct calcium levels in structures called dendritic spines, but in mice with the plaque-associated elevations, calcium levels were the same throughout a dendrite instead of changing at the locations of the spines. Those dendrites in which calcium levels were highest also had structural changes similar to those seen in the brains of patients who have died with Alzheimer's disease.

Cellular calcium overload can damage cells through a pathway involving the action of an enzyme called calcineurin, and a previous study found that treatment with a calcineurin inhibitor appeared to improve cognition in an Alzheimer's mouse model.

After treating plaque-bearing mice with the same calcineurin inhibitor, the researchers found that neuronal calcium levels were partially moderated and dendrites did not continue to degenerate, indicating that the calcineurin pathway may be a potential therapeutic target.

The study is published in the latest issue of Neuron.

Source: ANI

News A-Z
News Category
What's New on Medindia
Is COVID-19 Vaccination during Pregnancy Safe?
Sensory Processing Disorder (SPD)
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Alzheimers Disease Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Creutzfeldt-Jakob Disease Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) Diet and Alzheimer´s Disease 

Recommended Reading
Alzheimers Disease
Alzheimer's disease is a progressive neurodegenerative disease affecting memory and thinking and ......
Early Brain Changes Noticed in Healthy Children of Alzheimer Patients
Healthy children of Alzheimer patients display neurological changes much before clinical symptoms .....
Maternal History of Alzheimer's Puts Children at Risk
Individuals, who have a maternal history of Alzheimer's disease, are predisposed to the ......
The Lancet Says Dementia in Developing World 'Substantially' Underestimated
A new study, led by researchers from King's College London, has shown that cases of dementia in the ...
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Creutzfeldt-Jakob Disease
Creutzfeldt-Jakob disease (CJD) is a rare form of degenerative brain disorder, or brain damage that ...
Diet and Alzheimer´s Disease
Alzheimer''s begins with forgetfulness, but over time affects speech and coordination along with dra...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use