About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Lower Levels of MicroRNA 29 Protects from Cardiac Fibrosis, Says Study

by Anjali Aryamvally on November 24, 2017 at 11:43 AM
Lower Levels of MicroRNA 29 Protects from Cardiac Fibrosis, Says Study

Cardiac fibrosis involves an increase of connective tissue in the cardiac muscle, causing a loss of function. MicroRNA 29 (miR-29) plays an important role in the formation of tissue fibrosis, a research team at the Technical University of Munich (TUM) has discovered. They occur less frequently when miR-29 is suppressed in cardiac muscle cells. Older studies had suggested that it was in fact low levels of miR-29 that caused fibrosis. The new insights point to potential new approaches for developing drugs against fibrotic diseases.

Not long ago, microRNAs were not even known to exist. In recent years, however, it has become increasingly clear that these molecules play an important role in the function of our cells. For example, they determine whether certain proteins are formed. One reason why they are seen as potentially useful in the development of new drugs is that they are relatively easy to synthesize. Moreover, for every microRNA molecule, a corresponding anti-microRNA can be produced that binds and thereby neutralizes it. Universities and research institutes all over the world are currently studying which microRNAs have major effects in the body along with the underlying mechanisms.

Advertisement


Protecting against pathological changes

The team headed by Stefan Engelhardt, Professor of Pharmacology and Toxicology at TUM, is studying the function of microRNAs in the heart. In an earlier study, the scientists identified miR-29 as a molecule possibly associated with pathological changes in the cardiac muscle. Using a mouse model, they have now shown that animals with extremely low levels of miR-29 in their cells from birth are significantly less susceptible to cardiac fibroses and hypertrophy, i.e. pathological growth of the cardiac muscle.
Advertisement

A similar effect was seen when miR-29 was inhibited with drugs, namely a specific anti-miR. "In further experiments we were also able to show that miR-29 was responsible for this effect in particular in cardiac muscle cells, the myocytes," explains Yassine Sassi, first author of the study along with Petros Avramopoulos. The authors believe that miR-29 controls the activity of a certain chain of molecular signals in organs known as the Wnt signalling pathway. In healthy cells, this signalling pathway is largely silenced. But if Wnt signalling is activated by stress, the effects include the production of excess connective tissue.

Differences compared with earlier studies

"Another interesting result of our study was that we were unable to identify negative effects on the body in the absence of miR-29," says Petros Avramopoulos. Studies by other teams had suggested that it was not a higher, but rather a lower, miR-29 level that may lead to fibroses in such organs as the liver, lungs and kidneys. "A possible reason for this discrepancy is that, in our experiments, we assessed the function of endogenous miR-29 and conducted part of our studies in an intact organism," explains Stefan Engelhardt. "Other teams relied mainly on bioinformation analysis and cell cultures or the effects of an artificially elevated miR-29 level."

He now plans to use the results of his team's research as a starting point to investigate further effects of miR-29. "Cardiac fibrosss is dangerous and has so far been very difficult to treat," says Engelhardt. "We are currently looking into whether anti-miR-29, the synthetic counterpart of miR-29, can help not only to prevent this process, but also to reverse it if cardiac fibrosis has already established." Another challenge is to develop methods for the targeted delivery of future miR-29-based drugs to the cardiac muscle cells.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Lower Levels of MicroRNA 29 Protects from Cardiac Fibrosis, Says Study Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests