Medindia LOGIN REGISTER
Medindia

Low Oxygen Conditions Initiate Chain of Events Where Breast Cancer Cells Endure Transformation

by Rukmani Krishna on Dec 27 2013 12:23 AM

 Low Oxygen Conditions Initiate Chain of Events Where Breast Cancer Cells Endure Transformation
Low oxygen conditions, which often persist inside tumors, are sufficient to initiate a molecular chain of events that transforms breast cancer cells from being rigid and stationery to mobile and invasive, discovers biologists at The Johns Hopkins University. Their evidence, published online in Proceedings of the National Academy of Sciences on Dec. 9, underlines the importance of hypoxia-inducible factors in promoting breast cancer metastasis.
"High levels of RhoA and ROCK1 were known to worsen outcomes for breast cancer patients by endowing cancer cells with the ability to move, but the trigger for their production was a mystery," says Gregg Semenza, M.D., Ph.D., the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine and senior author of the article. "We now know that the production of these proteins increases dramatically when breast cancer cells are exposed to low oxygen conditions."

To move, cancer cells must make many changes to their internal structures, Semenza says. Thin, parallel filaments form throughout the cells, allowing them to contract and cellular "hands" arise, allowing cells to "grab" external surfaces to pull themselves along. The proteins RhoA and ROCK1 are known to be central to the formation of these structures.

Moreover, the genes that code for RhoA and ROCK1 were known to be turned on at high levels in human cells from metastatic breast cancers. In a few cases, those increased levels could be traced back to a genetic error in a protein that controls them, but not in most. This activity, said Semenza, led him and his team to search for another cause for their high levels.

What the study showed is that low oxygen conditions, which are frequently present in breast cancers, serve as the trigger to increase the production of RhoA and ROCK1 through the action of hypoxia-inducible factors.

Source-Eurekalert


Advertisement