Genetic manipulation not only increases one's lifespan but also improves the fitness of their offspring, finds a new study.

‘Reduction in IGF-1 signaling in adulthood increases the lifespan of parents and improves the fitness of their offspring.’

They found that by reducing this gene’s expression, they could not only increase the worm’s lifespan but also improve the health of its offspring.




It is hoped that the findings could one day help us stay younger and healthier for longer.
Lead researcher Dr. Alexei Maklakov, from UEA’s School of Biological Sciences, said: "Understanding how and why we age is fundamental to improving quality of life in an increasingly long-lived society.
"It is often thought that we age because of a slow accumulation of unrepaired cellular damage in our bodies, and that aging is the result of energy trade-offs between growth, reproduction, and survival.
"But we now know that switching off the function of specific genes in adulthood can increase longevity without a reproduction cost.
Advertisements
"If this is true, then we should be able to stay younger for longer by reducing high levels of gene signaling, or ’shutting down’ these genes in later life."
Advertisements
The IGF-1 signaling pathway controls an organism’s growth, reproduction, and longevity, and reduction in IGF-1 signaling increases lifespan in many animals. Because DAF-2 function is important for development and early-life reproduction, the team allowed the worms to develop and reach reproductive maturity before "knocking-down" the gene.
"As expected, we found that the worms lived more than two times longer when IGF-1 signaling that ages them was reduced. Remarkably, we also found that their offspring were fitter and produced more offspring themselves.
"We are really killing two birds with one stone because we are improving the health and longevity of the parents and the fitness of their offspring.
"This challenges the classic idea that aging is invariably linked to energy allocation between survival and reproduction.
"Our findings support the emerging view that suboptimal gene expression in adulthood lies at the heart of aging. Essentially, our results show that natural selection optimizes gene expression in early-life but is not sufficiently strong to optimize gene expression in late-life.
"Ageing can result from an accumulation of unrepaired damage with age. However, it can also result simply from suboptimal regulation of gene expression in late-life.
"Understanding the importance of these two processes is important both for our understanding of the evolution of aging and for the applied programs aimed at lifespan extension. We want to establish which of the two processes is more prevalent across the tree of life."
Source-Eurekalert