About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Leukemia Extracts Energy For Survival From Mitochondria

by Julia Samuel on October 6, 2017 at 6:09 PM
Font : A-A+

Leukemia Extracts Energy For Survival From Mitochondria

The blood cancer 'steals' parts of surrounding healthy bone marrow cells to thrive. This finding could help form new approaches to cancer treatment in the future.

Researchers at the University of East Anglia (UEA), funded by the Rosetrees Trust and The Big C Charity, found that healthy bone marrow stromal cells were made to transfer their power-generating mitochondria to neighboring cancer cells, effectively 'recharging' the acute myeloid leukaemia (AML) and supporting the leukaemia to grow.

Advertisement


AML has been found to act in a parasitic way by first generating oxygen-deprived conditions in the bone marrow which then stimulates the transfer of healthy mitochondria from the non-cancerous cells to the leukaemia cells.

The study, published on the cover of the journal Blood also identified how and why the mitochondria are transferred and discusses the potential impact this could have on future treatment and study of cancer.
Advertisement

Dr Stuart Rushworth from UEA's Norwich Medical School said: "Our results provide a first in the study of cancer mitochondrial transfer mechanism. We have clearly shown that the cancer cell itself drives transfer by increasing oxidative stress in the neighbouring non-malignant donor cells.

"Moreover, mitochondria which move from the bone marrow stromal cells to the AML blasts are functionally active, showing that the AML blast is using this biological phenomenon to its metabolic advantage."

An enzyme found in the AML cell membrane was shown to be responsible for creating the conditions necessary for mitochondrial transfer to occur. Researchers established that the enzyme called NOX-2 generated superoxide which drives this transfer. The transfer takes place through AML-derived tunnelling nanotubes (TNTs) which link the cancer cells directly to the surrounding healthy cells.

Furthermore by inhibiting NOX-2, researchers showed a reduction in mitochondrial transfer took place which limited how much energy the AML cells could generate and resulted in slower cancer growth.

Dr Rushworth said: "It was not previously known what stimulates mitochondrial transfer in AML or any cancer, and determination of the controlling stimulus is an essential first step if this biological function is to be exploited therapeutically in the future."

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Cancer News

 Tobacco Use Among Cancer Patients Likely to Increase Symptom Burden
A new study assessed the association of cigarette smoking and vaping on cancer-related symptom burden (fatigue, pain, emotional problems) and quality of life.
Breaking New Ground in Breast Cancer Therapy Without Chemotherapy
Scientists are making strides in personalized breast cancer therapy by developing a highly accurate molecular classifier test for breast cancer patients.
 Prostate Cancer 'Test by Request' Policies: Beneficial or Detrimental
Experts suggest high-income countries implement a comprehensive risk-based approach for prostate-specific antigen (PSA) testing to reduce overdiagnosis and overtreatment.
 Oral Cancer Cells Use Fat as Fuel to Escape from Immunity
New study identifies the role of metabolic comorbidities such as obesity in contributing to the immunogenicity of oral cancer through the immune pathway STING-IFN-I.
 Treating Anal Cancer With Smarter and Kinder Approach
Recent clinical trial results have shown that reducing the dose and duration of radiotherapy treatments for anal cancer may result in fewer side effects.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Leukemia Extracts Energy For Survival From Mitochondria Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests