About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Learn a New Skill Better by Taking Short Breaks

by Iswarya on April 13, 2019 at 5:39 PM
Font : A-A+

Learn a New Skill Better by Taking Short Breaks

Taking short breaks is essential to really solidify the memories of new skills that we learn, reports a new study. The findings of the study are published in the journal Current Biology.

"Everyone thinks you need to 'practice, practice, practice' when learning something new. Instead, we found that resting, early and often, maybe just as critical to learning as practice," said Leonardo G. Cohen, M.D., Ph.D., a senior investigator at NIH's National Institute of Neurological Disorders and Stroke and a senior author of the paper.

Advertisement


"Our ultimate hope is that the results of our experiments will help patients recover from the paralyzing effects caused by strokes and other neurological injuries by informing the strategies they use to 'relearn' lost skills."

The study was led by Marlene Bönstrup, M.D., a postdoctoral fellow in Dr. Cohen's lab. Like many scientists, she held the general belief that our brains needed long periods of rest, such as a good night's sleep, to strengthen the memories formed while practicing a newly learned skill. But after looking at brain waves recorded from healthy volunteers in learning and memory experiments at the NIH Clinical Center, she started to question the idea.
Advertisement

The waves were recorded from right-handed volunteers with a highly sensitive scanning technique called magnetoencephalography. The subjects sat in a chair facing a computer screen and under a long cone-shaped brain scanning cap.

The experiment began when they were shown a series of numbers on a screen and asked to type the numbers as many times as possible with their left hands for 10 seconds; take a 10-second break, and then repeat this trial cycle of alternating practice and rest 35 more times. This strategy is typically used to reduce any complications that could arise from fatigue or other factors.

As expected, the volunteers' speed at which they correctly typed the numbers improved dramatically during the first few trials and then leveled off around the 11th cycle. When Dr. Bönstrup looked at the volunteers' brain waves, she observed something interesting.

"I noticed that participants' brain waves seemed to change much more during the rest periods than during the typing sessions," said Dr. Bönstrup. "This gave me the idea to look much more closely for when learning was happening. Was it during practice or rest?"

By reanalyzing the data, she and her colleagues made two key findings. First, they found that the volunteers' performance improved primarily during the short rests, and not during typing. The improvements made during the rest periods added up to the overall gains the volunteers made that day. Moreover, these gains were much greater than the ones seen after the volunteers returned the next day to try again, suggesting that the early breaks played as critical a role in learning as the practicing itself.

Second, by looking at the brain waves, Dr. Bönstrup found activity patterns that suggested the volunteers' brains were consolidating, or solidifying, memories during the rest periods. Specifically, they found that the changes in the size of brain waves, called beta rhythms, correlated with the improvements the volunteers made during the rests.

Further analysis suggested that the changes in beta oscillations primarily happened in the right hemispheres of the volunteers' brains and along neural networks connecting the frontal and parietal lobes that are known to help control the planning of movements. These changes only happened during the breaks and were the only brain wave patterns that correlated with performance.

"Our results suggest that it may be important to optimize the timing and configuration of rest intervals when implementing rehabilitative treatments in stroke patients or when learning to play the piano in normal volunteers," said Dr. Cohen. "Whether these results apply to other forms of learning and memory formation remains an open question."

Dr. Cohen's team plans to explore, in greater detail, the role of these early resting periods in learning and memory.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Nearly 1 In 5 UK Adults Experience Negative Responses to Sounds
How many people in the UK have misophonia? In a representative sample study, most people had at least some irritation upon hearing trigger sounds.
Why Are 1 in 8 Indians at Risk of Irreversible Blindness
Routine eye-checkups and mass screenings enable early diagnosis and treatment of glaucoma. Late-stage glaucoma diagnosis leads to blindness.
 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Learn a New Skill Better by Taking Short Breaks Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests