About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Laser Technology May Revolutionize Self-driving Cars, Smartphones

by Dr. Enozia Vakil on June 1, 2014 at 8:59 PM
Font : A-A+

 Laser Technology May Revolutionize Self-driving Cars, Smartphones

A new twist to 3-D imaging technology could enable people to use a self-driving car to spot their kid half a block away, answer their smartphone across a room with the wave of their hand, and many more.

The new system, developed by researchers at the University of California, Berkeley, can remotely sense objects across distances as long as 30 feet, 10 times farther than what could be done with comparable current low-power laser systems.

Advertisement

With further development, the technology could be used to make smaller, cheaper 3-D imaging systems that offer exceptional range for potential use in self-driving cars, smartphones and interactive video games like Microsoft's Kinect, all without the need for big, bulky boxes of electronics or optics.

UC Berkeley's Behnam Behroozpour, who will present the team's work at CLEO: 2014, being held June 8-13 in San Jose, California, USA, said while meter-level operating distance is adequate for many traditional metrology instruments, the sweet spot for emerging consumer and robotics applications is around 10 meters or just over 30 feet.
Advertisement

The new system relies on LIDAR ("light radar"), a 3-D imaging technology that uses light to provide feedback about the world around it. LIDAR systems of this type emit laser light that hits an object, and then can tell how far away that object is by measuring changes in the light frequency that is reflected back.

It can be used to help self-driving cars avoid obstacles halfway down the street, or to help video games tell when you are jumping, pumping your fists or swinging a "racket" at an imaginary tennis ball across an imaginary court.

In their new system, the team used a type of LIDAR called frequency-modulated continuous-wave (FMCW) LIDAR, which they felt would ensure their imager had good resolution with lower power consumption, Behroozpour says.

This type of system emits "frequency-chirped" laser light (that is, whose frequency is either increasing or decreasing) on an object and then measures changes in the light frequency that is reflected back. (ANI)

Source: ANI
Advertisement

Advertisement
Advertisement

Latest Research News

 New Insights into How the Immune System Responds to Spinal-Cord Injuries
New study findings delineate how aging affects the immune response following Spinal cord injury (SCI) and highlight the participation of the spinal cord meninges in repair.
Nearsightedness: Atropine Eye Drops may Slow Progression in Kids
A recent clinical trial suggests that the first medication therapy to reduce the progression of nearsightedness in children could be on the way.
Autoimmune Diseases Affect One in Ten: Study
Autoimmune disorders were found to be linked to Sjogren's, systemic lupus erythematosus, and systemic sclerosis.
Remarkable Journey of Transforming Lives With Brain Pacemaker
Successful brain pacemaker implantation has helped a 51year old Parkinson's disease patient to revitalize her quality of life.
What Are the Effects of Healthy Lifestyle on Osteoarthritis?
Recent recommendations on lifestyle behaviors to prevent progression of rheumatic and musculoskeletal diseases revealed.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Laser Technology May Revolutionize Self-driving Cars, Smartphones Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests