About Careers Internship MedBlog Contact us

Key to Gene-silencing Activity Discovered

by Sheela Philomena on May 13, 2013 at 12:20 PM
 Key to Gene-silencing Activity Discovered

The key to a gene-silencing mechanism that serves as a major controller of cells' activities has been identified by scientists. The discovery could lead to a powerful new class of drugs against viral infections, cancers and other diseases.

"Learning to control natural gene silencing processes will allow an entirely new approach to treating human disease," said Ian J. MacRae, assistant professor in TSRI's Department of Integrative Structural and Computational Biology and principal investigator for the study, which appears as the cover story in the May 9, 2013 issue of the journal Molecular Cell.


A Scientific Mystery and Technical Conundrum

The gene-silencer in question is Argonaute 2, a molecular machine in cells that can grab and destroy the RNA transcripts of specific genes, preventing them from being translated into proteins. Argonaute 2 and other Argonaute proteins regulate the influence of about a third of the genes found in humans and other mammals—and thus are among the most important modulators of our cells' day-to-day activities. Argonautes' gene-silencing functions also help cells cope with rogue genetic activity from invading viruses or cancer-promoting DNA mutations.

Yet Argonautes' workings are complex and not yet entirely understood. For example, before it starts a search-and-destroy mission against a specific type of target RNA, an Argonaute 2 protein takes on board a target-recognition device: a short length of "guide RNA," also known as a microRNA (miRNA). The miRNA's sequence is mostly complementary to the target RNA's—a sort of chemical mirror-image—so that it can stick tightly to it.

But how do an Argonaute protein and its miRNA guide, having formed their partnership, manage to part company? It has been a scientific mystery and technical conundrum for researchers, who have found it hard to separate Argonaute proteins from miRNAs in the lab dish.

"That problem led us to look for a way to get Argonautes to unload these miRNAs," said Nabanita De, a postdoctoral fellow in MacRae's laboratory who was first author of the new study.

Matches and Mismatches

In an initial set of experiments, the team demonstrated that when an miRNA hooks up with an Argonaute 2, the pair do remain locked together and functioning for an exceptionally long time: days to weeks, whereas solo miRNA normally is degraded within minutes.

Yet prior studies by other laboratories have hinted at the existence of mechanisms that can hasten the separation of miRNAs from Argonautes. Some viruses, for example, produce decoy target RNAs that virtually nullify the activity of the corresponding miRNAs, seemingly by destabilizing the miRNA-Argonaute pairing. A key feature of these decoy target RNAs is that they make an almost perfect complementary match to the miRNAs—especially at one end of the miRNAs, known as the three-prime or 3' end. In this respect, they match the miRNAs much better than the natural gene transcripts that the miRNAs evolved to target.

De confirmed that decoy RNAs designed to match miRNAs this way can greatly hasten the miRNAs' "unloading" from Argonautes, thus effectively dialing down these miRNAs' normal gene-silencing activities. By contrast, mismatches at the 3' end delayed unloading, enhancing the gene-silencing activity.

Why do these matches and mismatches have such effects on the miRNA-Argonaute pairing? The mechanisms aren't obvious. But De noted that mismatches at the opposite end of miRNAs —the 5' end—have the opposite effect. "Targets with 5'-end mismatches are actually better at unloading miRNAs from Argonaute," she said.

"The next thing we're trying to figure out is how all that works," said MacRae. "We have some guesses but no clear answer."

In a study reported last year, MacRae's laboratory used X-ray crystallography to determine the first high-resolution atomic structure of an Argonaute 2-miRNA complex. Now the team is working on a structural study of the complex as it grabs a target RNA. "When we can see the structural details of that interaction, then I think we'll have a much better handle on this loading and unloading process," said MacRae.

Many Potential Applications

Scientists already have begun developing gene-silencing drugs that work like miRNAs; they are taken up by Argonaute proteins as guide RNAs and lead to the silencing of targeted gene transcripts. Pharmaceutical companies also are developing drugs that bind directly to miRNAs to inhibit their activity. The findings here suggest a new and, in principle, more powerful class of miRNA inhibitors/enhancers, aimed at destabilizing or stabilizing the miRNA-Argonaute complex.

"I can think of many applications for these," said MacRae. "One of the most obvious would be against hepatitis C virus, which requires a certain miRNA in liver cells for efficient replication; an RNA-based drug that speeds up the unloading of this virus-enhancing miRNA would be a powerful approach for shutting down the virus."

A better understanding of the miRNA loading and unloading process also should lead to better miRNA-type drugs, he added.

Source: Eurekalert
Font : A-A+



Latest Research News

Cerebrospinal Fluid Leaks: Link to Traumatic Brain Injury and Dementia?
Cerebrospinal fluid (CSF) leaks are detected in approximately 1-3% of adults who have experienced a traumatic brain injury.
Astrocyte Activation Through Optogenetics: A New Hope in the Fight Against Alzheimer's
The optogenetic activation of hippocampal astrocytes can be viewed as a novel therapeutic avenue for addressing Alzheimer's disease.
Link Between Cholesterol and Inflammation in Alzheimer's Disease Identified
In Alzheimer's disease condition, the control and adjustment of ABCA7 levels in response to inflammation and the decrease in the availability of cholesterol.
Inflammatory Bowel Disease and Atopic Dermatitis Share Common Links
Atopic dermatitis (AD) and inflammatory bowel disease (IBD) can lead to alterations in the microbiome, and disruptions in the skin and gut barrier.
Vitiligo-Associated Autoimmunity Linked to Lower Health Risks
Gaining insights into mortality risks among vitiligo patients will enhance patient counseling, healthcare monitoring, and overall patient management strategies.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
Greetings! How can I assist you?MediBot

Key to Gene-silencing Activity Discovered Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests