Scientists have discovered the master switch in body's immune system. The discovery of the molecular pathway regulated by a tiny molecule - known as microRNA-142 - is a major advance in the understanding of the immune system.

‘MicroRNA-142 controls regulatory T cells, which modulate the immune system and prevent autoimmune disease. It is, they found, the most highly expressed regulator in the immune system.’

It is published in the Journal of Clinical Investigation today. 




The discovery of the molecular pathway regulated by a tiny molecule - known as microRNA-142 - is a major advance in our understanding of the immune system.
Professor Lord, led the research while at Kings College London in collaboration with Professor Richard Jenner at UCL.
And according to Professor Lord, the discovery could be translated into a viable drug treatment within a few years.
He said: "Autoimmune diseases often target people in the prime of their life creating a significant socio-economic burden on them. Sometimes, the effect can be devastating, causing terrible hardship and suffering.
Advertisements
If the activity of Regulatory T cells is too low, this can cause other immune cells to attack our own body tissues. If these Regulatory T cells are too active, this leads to suppression of immune responses and can allow cancers to evade the immune system.
Advertisements
Professor Richard Jenner from UCL, who led the computational side of the project, said that: "We were able to trace the molecular fingerprints of this molecule across other genes to determine how it acted as such a critical regulator."
Professor Lord, now Vice President and Dean of the Faculty of Biology, Medicine and Health at The University of Manchester, added: "Scientists over the past decade or so have developed therapies which are able to modulate different pathways of the immune system. We hope that this new discovery will lead to the development of new ways to treat autoimmunity, infectious diseases and cancer and we are incredibly excited about where this may lead."
Source-Eurekalert