About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Insight into Early Development of Human Embryos from Sea Squirt Study

by Kathy Jones on August 1, 2010 at 3:51 PM
Font : A-A+

 Insight into Early Development of Human Embryos from Sea Squirt Study

Researchers have uncovered the origin of the heart-jaw connection in vertebrates in a study on model organism Ciona intestinalis, commonly known as the sea squirt. This is a discovery that could provide insight into the early development of human embryos.

Researchers at the University of California, Berkeley, have discovered the origins of second heart field in vertebrates.

Advertisement

Sea squirts are bag-like gelatinous creatures whose full genome has been sequenced-one that shares 80 percent of its genes with humans.

Though its body is clearly more primitive than creatures with backbones and spinal columns, the sea squirt nevertheless offers a valuable resource to scientists seeking to understand the evolutionary links between these simple chordates and more complex creatures.
Advertisement

Vertebrate hearts form from two distinct cell populations, termed first heart field and second heart field.

From these fields are derived, respectively, the left ventricle and the right ventricle and outflow tract of the heart.

The lineage relationship between these cell types was uncertain but mysteriously, a number of reports linked cells in the second heart field to muscle cells in the lower jaw in birds and mammals.

"The heart-jaw connection is evolutionarily ancient. We think the sea squirt is valuable as a developmental model to study these connections because it is a simple chordate that is the closest living relative of vertebrates, including humans," said developmental biologist Mike Levine.

By tracking the movement of specific cells during embryonic development, Levine and his team found that heart progenitor cells also produce the atrial siphon muscles (ASMs-responsible for expelling water during feeding) in Ciona.

Researchers think it is possible that the atrial siphon in the sea squirt is the equivalent of the lower jaw in vertebrates.

During development, the ASM precursor cells in Ciona express the same markers seen in cells that form the jaw muscles and second heart field in vertebrates, evidence that supports the idea that these muscle groups are linked.

These results also suggest that "re-routing" of jaw cells into the developing heart could lead to evolution of the more intricate hearts seen in higher vertebrates such as humans.

"This is an exciting discovery, because we still don't know the rules for evolving novelty. We understand how you lose things via evolution, but we really don't understand how you make something more complex," explained Levine.

The study is published in the latest issue of the journal Science.

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Ways to Manage Stress during COVID-19 Pandemic
Can Adjusting Fatty Acid Intake Improve Mood in Bipolar Disorder Patients?
Insulin Resistance Doubles the Risk of Major Depressive Disorder
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells 

Recommended Reading
Psychological Changes In Pregnancy
Pregnancy is an experience of growth, change, enrichment and challenge. During the 40 weeks of ......
Drugs in Pregnancy and Lactation
During pregnancy & lactation a nutritious diet, suitable exercise, adequate rest and a tranquil ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use