About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Indian Researchers Shed More Light on Malarial Parasite

by VR Sreeraman on September 16, 2007 at 2:17 PM
Font : A-A+

Indian Researchers Shed More Light on Malarial Parasite

Indian researchers have moved a step further in the fight against malaria by shedding a deeper light on the malarial parasite.

In a new study, researchers from the Indian Institute of Science have constructed a chaperone interaction network for the parasite which provides, for the first time, a logical basis for the anti-malarial effect of known drugs and highlights new proteins that can potentially be used in the fight against malaria.

Advertisement

Malaria is caused by a protozoan parasite belonging to the genus Plasmodium, and Plasmodium falciparum is responsible for the most severe form of malaria. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria.

Recent reports from several labs point to a crucial role played by a group of proteins termed molecular chaperones. These chaperones participate in the maintenance and growth of cells and are implicated in parasite survival and growth. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function.
Advertisement

Dr. Tatu and colleagues' systems-level approach provides information on 95 different chaperones in the parasite and also provides insights into their business partners and cellular processes that they might regulate.

Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows making predictions regarding the functions of hypothetical proteins based on their interactions.

It also provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor, and provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.

The study is published in PLoS Computational Biology.

Source: ANI
SRM/J
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Trypanosomiasis 

Recommended Reading
Malaria
Malaria is caused by a parasite that enters blood through the bite of an infected mosquito. It is .....
Researchers Use GPS, PDAs For Malaria Prevention in Africa, Study Says
CDC researchers have developed new tools using GPS technology and PDAs to help prevent the spread .....
Trypanosomiasis
Sleeping sickness or Trypanosomiasis is a vector-borne parasitic disease which can trigger life-thre...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use