About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Improving Cancer Care With Advanced Nanotechnology

by Anjali Aryamvally on April 14, 2018 at 12:10 PM
Font : A-A+

Improving Cancer Care With Advanced Nanotechnology

Study addresses the challenges of nanoparticle-based cancer-targeting strategies. The new Tel Aviv University study also suggests ways of refocusing the collaborative work of cancer researchers and clinicians to move the field forward from "the bench" to the patients.

The study follows landmark research published 10 years ago in Nature Nanotechnology that reviewed the full potential of actively targeted nanocarriers to revolutionize cancer care. The opinion piece garnered over 5,000 citations, making it one of the most influential analyses on the subject to date. That study was written by Prof. Dan Peer, director of the SPARK Tel Aviv Center for Translational Medicine at TAU's Faculty of Life Sciences, and Jeffrey Karp, principal investigator at Brigham and Women's Hospital and a professor at Harvard Medical School, Harvard University.

Advertisement


The updated review by Prof. Peer, Prof. Karp, Daniel Rosenblum, a doctoral student in Prof. Peer's lab, and Dr. Nitin Joshi, an instructor at Harvard Medical School, was published recently in Nature Communications.

A hard road from the lab to the clinic

"When Dan and Jeff's paper was published 10 years ago, there was great hope that nanocarriers in general and actively targeted nanocarriers in particular would transform cancer therapy," Rosenblum says. "We've made significant progress towards understanding the interaction of nanocarriers with tumor cells and tissues since then, but the clinical translation has been limited."
Advertisement

"Few nanocarriers have been approved for clinical use, and none of the actively targeted nanocarriers have advanced past clinical trials," Dr. Joshi adds. In the new paper, the authors discuss several reasons for this, including a lack of preclinical models that accurately mimic human tumors. They also emphasize the need not only for patient evaluation before treatment with nanocarriers, but also for clinical trial pathways appropriate for this new generation of drugs.

"We detailed what existed in the arsenal at that time, the challenges that lay ahead and how we wanted the future of specific tumor-targeting to look," says Prof. Peer. "We explored all the available nanoparticle options with which to penetrate tumors. We were sure the future was bright.

"But in the past 10 years, the Food and Drug Administration (FDA) has approved only 15 passively targeted nanocarriers. There have been some 40,000 studies published about active cellular targeting, but none of the approaches have advanced past clinical trials. What's wrong with this picture?"

It's complicated

According to the new review, what's wrong is that cancers have flummoxed researchers by being even more complex in nature than previously believed. "They change and evolve all the time, are heterogeneous in composition and eventually gain resistance," Rosenblum says. "We need to be able to target many kinds of cancer cell types, and we need the systems to be as simple as possible. But they have to be versatile too. We emphasize the idea of developing personalized nanocarriers based on the type of cancer and its biomarker profile."

The authors suggest that to move the field forward, the FDA and European Medicines Agency (EMA) must change their regulatory processes. "We have to adopt the regulation process to the new type of drugs," Dr. Joshi says.

"We need to conduct trials on humans -- trials that provide more insights into the interaction of nanocarriers with human biology," Prof. Karp says. "We can then use these to drive the development of next-generation nano-targeted platforms."

Rosenblum says the key to future success also lies in developing animal models that better resemble human tumors and preselecting patients with a high likelihood of responding to nanocarrier-based cancer treatments.

The authors argue that technological solutions such as focused ultrasound and companion diagnostics, coupled with biological solutions such as overcoming the cellular barriers and increasing particle payloads at the target site, will also increase the likelihood of successful treatment.

"The field continues to offer great potential for patients, and significant progress has been achieved. But new challenges have emerged during the past 10 years, and more support and work are required," Prof. Karp concludes.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Resting Heart Rate
Is COVID-19 Vaccination during Pregnancy Safe?
Sensory Processing Disorder (SPD)
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Nanotechnology Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Use of Nanotechnology in Healthcare Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Personalized Tumor Vaccines may Help Treat Cancer
Personalized vaccines can be developed in the laboratory by patient's immune cells to fight against ...
Combination Therapy can Improve Outcomes in Bladder Cancer Patients
Metastatic bladder cancer patients show better outcomes when treated simultaneously with ......
Study Unveils the Resistance Mechanisms in ALK+ and ROS1+ Cancers
Study provides an in-depth look at how ALK+ and ROS1+ cancers evolve to resist treatment....
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...
Use of Nanotechnology in Healthcare
Nanotechnology provides several potential solutions for many life-threatening diseases. Learn more a...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use