
The genetic material or DNA is a blueprint that contains instructions for all cellular processes in the body. This provides every cell with instructions on what specialised cell to become or what function to perform. However, in order for this to function properly, the instructions must be read properly by every cell to ensure that the right genes are active in the right tissue. If there is a defect in the cells reading or understanding of the blueprint, cells acquire the wrong identity which can ultimately lead to cancer.
However, the program that determines which genes are switched on or off as a cell develops does not depend solely on DNA, but is also determined by epigenetic marks. Methylation marks on DNA act as a molecular switch that regulate gene activity in order to coordinate the cell's specialization within the organism. How this DNA methylation is faithfully regulated, and how it can become defective, has not yet been fully resolved. However, the consequences are well-known: In many cancer types, the methylation is deposited in the wrong place. This leads to genes being read incorrectly.
Dual-layer epigenetic gene regulation
Increasing understanding of how cancer develops
The study's findings provide important basic insights for cancer research. DNMT3A is among the most frequently mutated genes in an aggressive type of leukemia, and it plays a significant role in how this disease develops. "Our findings point toward a previously unknown function of the DNMT3A protein in the interaction of these two epigenetic modifications that are normally not directly linked. We hope that these new insights will allow us to increase our understanding of the molecular mechanisms that result in cancer and to more effectively treat this aggressive type of leukemia." explains Professor Baubec.
Source: Eurekalert
Advertisement
|