About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Immune Cells May Help Treat Inflammatory Bowel Disease

by Bidita Debnath on September 23, 2017 at 11:59 PM
Font : A-A+

 Immune Cells May Help Treat Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is an umbrella term used to describe disorders that involve chronic inflammation of your digestive tract. Research shows that specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for IBD.

The research team, led by Georgia State University and the University of Michigan, wanted to understand how a wound heals in the intestine because in IBD, which includes Crohn's disease and ulcerative colitis, damage to the intestinal epithelial barrier allows bacteria in the intestine to go across the barrier and stimulate the body's immune system. This can lead to excessive inflammation and IBD. Efficient repair of the epithelial barrier is critical for suppressing inflammation and reestablishing intestinal homeostasis.

Advertisement


In this study, the researchers found that a specific population of immune cells called macrophages have the ability to secrete or produce a protective or healing factor known as Interleukin-10 (IL-10), which can interact with receptors on intestinal epithelial cells to promote wound healing. The findings are published in The Journal of Clinical Investigation.

"Understanding how wounds can be healed is believed to be very important and a potential therapeutic avenue for the treatment of inflammatory bowel disease," said Dr. Tim Denning, associate professor in the Institute for Biomedical Sciences at Georgia State. "In this study, we tried to understand some of the cellular mechanisms that are required for optimal wound healing in the intestine. To do this, we used a cutting-edge system, a colonoscope with biopsy forceps, to create a wound in mice. This is analogous to colonoscopies in humans. This cutting-edge system allowed us to begin to define what cells and factors contribute to wound healing in the mouse model."
Advertisement

The researchers used a small, fiber optic camera and forceps to pinch the mouse's intestine and take a small biopsy, just as how colonoscopies are done in humans. This small pinch created a wound, which the researchers observed as it healed. The study compared intestinal wound healing in two groups of mice: 1) typical mice (wild type) found in nature and 2) mice genetically deficient in the healing factor IL-10, specifically in macrophages, which impairs their ability to have normal wound repair.

The team also analyzed the effects of IL-10 on epithelial wound closure in vitro using an intestinal epithelial cell line.

They concluded that macrophages are a main source of IL-10 in the wound bed, and IL-10 stimulates in vitro intestinal epithelial wound healing and increases in expression during in vivo intestinal epithelial wound repair. In vitro, exposure to IL-10 increased wound repair within 12 hours and the response was further enhanced after 24 hours.

"Basically, you have a wound, and you have an immune cell that comes in," Denning said. "That's the macrophage. The macrophage can produce a factor (IL-10), and that factor can then cause the cells that are around the wound to start closing the wound."

In addition, the researchers defined some of the signaling pathways that IL-10 uses to orchestrate wound repair. They found IL-10 promotes intestinal epithelial wound repair through the activation of cAMP response element-binding protein (CREB) signaling at the sites of injury, followed by synthesis and secretion of the WNT1-inducible signaling protein 1 (WISP-1).

"The implications are that understanding these cells, the factors and the pathways may offer us the ability to modulate this pathway during inflammatory bowel disease, which could lead to treatment and promote healing and recovery from inflammatory bowel disease," Denning said. "There are different ways we think about it, but perhaps we could deliver the beneficial compounds (IL-10 and the downstream signaling pathways) to those patients, orally or even intravenously, or somehow drive the natural production of those compounds."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Surgical Treatment Colo-rectal cancer - Management Crohns Disease Myasthenia Gravis Inflammatory Bowel Disease 

Recommended Reading
New Technology Can Identify Types of Inflammatory Bowel Disease Easily
In the United States, more than 1.6 million people are suffering from inflammatory bowel disease ......
Inflammatory Bowel Disease (IBD): Gut Microbiome Could Predict Success Response for Treatment
Gut microbiome may help to predict the success response of Inflammatory bowel disease (IBD) ......
Inflammatory Bowel Diseases on the Rise Among Kids in Canada
Canada has amongst the highest rates of pediatric inflammatory bowel disease (IBD) in the world....
Immune Boosting Gene That Fights Inflammatory Bowel Disease
Cd14 gene is a protective factor in experimental inflammatory bowel disease by enhancing the ......
Colo-rectal cancer - Management
Treatment for Colorectal Cancers may involve surgery,chemotherapy, radiation therapy or biological t...
Crohns Disease
Crohn’s disease or regional enteritis is an inflammatory bowel disease that involves the small intes...
Inflammatory Bowel Disease
Inflammatory bowel disease involves chronic inflammation of the colon and small intestine. Symptoms ...
Myasthenia Gravis
Myasthenia gravis is the commonest disorder of neuromuscular transmission. Autoimmune myasthenia gra...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use