A new way to identify the genes of harmful microbes, particularly those that have been difficult to study in the laboratory has been developed by researchers
A new way to identify the genes of harmful microbes, particularly those that have been difficult to study in the laboratory has been developed by researchers at Duke University Medical Center. This new method uses chemicals to create mutant bacteria, followed by genomic sequencing to identify all mutations. By looking for common genes that were mutated in Chlamydia sharing a particular trait, the investigators were able to rapidly "zero in" on the genes responsible for that trait.
The approach is versatile and inexpensive enough that it could be applied to study a range of microorganisms, said Raphael Valdivia, Ph.D., an associate professor of molecular genetics and microbiology at Duke.
"We were able to learn about genes that allow Chlamydia to flourish in their hosts without the traditional, lengthy process of domesticating the pathogen to accept recombinant DNA," Valdivia said. "Our approach marries classical microbiology techniques with 21st century genome-sequencing technologies. If you encounter a new dangerous microorganism and want to determine what genes are important, I think this represents an effective way to learn all we can, as fast as we can."
One of the goals in studying microbial pathogens that harm humans and animals is to locate and disrupt the genes required for infection, Valdivia said.
The microbe in this study, Chlamydia, is usually sexually transmitted, hides in human cells, and is a type of bacteria that must cause disease to be transmitted from one host to another. Chlamydia is the leading sexually transmitted infection and a risk factor for pelvic inflammatory disease and infertility.
Prior to this work, the function of many Chlamydia genes had to be inferred by their similarity to genes from other bacteria. "By isolating mutants that don't grow well inside cells and identifying the underlying mutations, we can learn a lot about how these genes contribute to disease," Valdivia said. "These are the activities we'd like to block."
Advertisement
The work was published on Jan. 9 in the early edition of the Proceedings of the National Academy of Sciences.
Advertisement
Source-Eurekalert