About Careers Internship MedBlog Contact us

High-Dose X-Ray Irradiation at a Certain Dose Alters the Neuronal Cytoskeleton and Cytomechanics

by Bidita Debnath on July 24, 2014 at 10:55 PM
 High-Dose X-Ray Irradiation at a Certain Dose Alters the Neuronal Cytoskeleton and Cytomechanics

For the treatment of various types of primary and metastatic brain tumors, cranial radiotherapy is one of the most important therapeutic methods.

Although conventional photon irradiation has significantly improved the treatment of cancer, the central nervous system is prone to damage after high-dose irradiation, resulting in severe delayed or progressive nervous tissue injury. The issues regarding brain radiation injury have been widely discussed, and recent investigations have emphasized changes in pathomorphology. However, the underlying mechanism remains in debate.


Researchers at the School of Stomatology, Lanzhou University, China discovered that radiation-induced neuronal injury was more apparent after X-irradiation. Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. The depolymerization, misfolding or denaturation of microtubule associated proteins might contribute to the destruction of the nutrient transport channel within cells after radiation damage.

Moreover, some hidden apoptosis-related genes are released through the regulation of several signals, thus triggering apoptosis and inducing acute radiation injury. Their experimental data also revealed that X-rays produced much severer radiation injury to cortical neurons than a heavy ion beam, suggesting that the heavy ion beam has a biological advantage over X-rays.

This could provide a theoretical basis for effectively improving the protection of normal brain tissue in future cranial radiotherapy. This article is released in the Neural Regeneration Research (Vol. 9, No. 11, 2014).

Source: Eurekalert
Font : A-A+



Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
Greetings! How can I assist you?MediBot

High-Dose X-Ray Irradiation at a Certain Dose Alters the Neuronal Cytoskeleton and Cytomechanics Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests