Medindia LOGIN REGISTER
Medindia
Advertisement

Hepatitis A Virus Cloaks Itself in Membranes Hijacked from Infected Cells

by Kathy Jones on April 7, 2013 at 12:13 PM
 Hepatitis A Virus Cloaks Itself in Membranes Hijacked from Infected Cells

Traditionally, viruses have been classified into two types; one with an outer lipid-containing envelope and those without an envelope.

For the first time, researchers at the University of North Carolina have discovered that hepatitis A virus, a common cause of enterically-transmitted hepatitis, takes on characteristics of both virus types depending on whether it is in a host or in the environment.

Advertisement

"The whole universe of virology is divided into two types of viruses - viruses that are enveloped and viruses that are not enveloped. If you look at any basic virology textbook, it will say that these are categories that distinguish all viruses," said lead researcher Stanley M. Lemon, MD, professor of medicine and a member of the UNC Lineberger Comprehensive Cancer Center and the Center for Translational Immunology.

In a paper published online in Nature on March 31, Dr. Lemon's team discovered that hepatitis A virus does not have an envelope when found in the environment, but acquires one from the cells that it grows in within the liver. It circulates in the blood completely cloaked in these membranes.
Advertisement

"What we have discovered is that a virus that has been classically considered to be 'non-enveloped', that is hepatitis A virus, actually hijacks membranes from the cells it grows in to wrap itself in an envelope. It steals membranes from the cell, as it leaves the cell, to cloak itself in this envelope that then protects it from antibodies. And that's really novel. No one has shown that previously for a virus. It really blurs that classic distinction between these two types of viruses," said Dr. Lemon.

Being enveloped in host membranes helps the virus to evade host immune systems and spread within the liver. Enveloped viruses are generally quite fragile in the environment, while non-enveloped viruses are hardier outside of a host and can survive for longer periods between hosts. Dr. Lemon believes the dual nature of hepatitis A virus allows it to use the advantages of both virus types to enhance its survivability.

"What hepatitis A virus has done, and we don't totally understand how it has accomplished this, is to have the advantage of existing as a virus with no envelope and being very stable in the environment so it can be transmitted efficiently between people, but to wrap itself in a membrane to evade neutralizing antibodies and facilitate its spread within the host once it has infected a person," said Lemon. While no other virus has been shown to exhibit this particular behavior, Dr. Lemon said that it is likely that hepatitis A virus is not unique in its dual nature.

Hepatitis A is endemic in developing nations that lack modern sanitation and clean water. The virus is transmitted orally and then passed back into the environment through feces. By not needing its envelope to survive outside the host, the virus gains the ability of non-enveloped viruses to survive longer and be transmitted efficiently.

One major question raised by the finding is why the hepatitis A vaccine works so well to contain the infection. The vaccine, one of the most effective in use, was thought to elicit neutralizing antibodies that attack the virus in the blood. Since it is now known that the envelope surrounding the virus in the blood prevents this, the vaccine cannot work as previously thought.

"It makes us rethink completely the mechanism underlying the well-documented efficacy of hepatitis A vaccine. I think this is one of the most important things to come out of the study," said Dr. Lemon.

The research at UNC was funded by the National Institute of Allergy and Infectious Diseases. Future studies will investigate the mechanisms behind the vaccine's effectiveness, Dr. Lemon said. While it was previously thought that vaccine-induced antibodies attacked the virus outside of the cell, the new findings suggest antibodies may actually be able to restrict viral replication within a cell.

"Understanding how this really good vaccine works will help us in the future to develop better vaccines for other viruses that we are having difficulty developing vaccines for," said Dr. Lemon.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Intricate Dance of Flaxseed, Gut Microbiome, and Breast Cancer Genes
Role of flaxseed in the relationship between gut microorganisms and mammary gland microRNAs has been uncovered by a new study.
MRNA Therapy's Promise for Chronic and Acute Liver Disease
New mRNA stem cell therapy, akin to COVID-19 vaccine tech, shows potential against chronic and acute liver diseases.
Could Light Therapy Be a Breakthrough for Alzheimer's?
Light therapy enhances sleep and psycho-behavioral symptoms in Alzheimer's patients with minimal side effects.
Does Twice Daily Stimulation Enhance Alzheimer's Mental Functions?
Electrical stimulation improves Alzheimer's patients' cognitive function and correlates with restored cortical plasticity.
South Korea's 2050 Forecast: Negative Growth Amid Low Fertility
South Korea's total fertility rate, averaging the number of children a woman aged 15-49 has in her lifetime, dropped to 0.81.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Hepatitis A Virus Cloaks Itself in Membranes Hijacked from Infected Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests