About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Heart Damage After Attack can be Reversed Through Gene Therapy

by Kathy Jones on March 29, 2013 at 7:35 PM
Font : A-A+

 Heart Damage After Attack can be Reversed Through Gene Therapy

Gene therapy can be used to treat patients who have suffered damage to their hearts following cardiac arrests and other heart conditions, a new study by American researchers reveals.

The research group was led by University of Washington (UW) Professor and Vice Chair of Bioengineering Michael Regnier and Dr. Chuck Murry, director of the Center for Cardiovascular Biology and co-director of the Institute for Stem Cell and Regenerative Medicine at UW.

Advertisement

Normally, muscle contraction is powered by a molecule, the nucleotide called Adenosine-5'-triphosphate (ATP).

In a previous study of isolated muscle, Regnier, Murry and colleagues had found that one naturally occurring molecule, called 2 deoxy-ATP (dATP), was actually more effective than ATP in boosting muscle contraction, increasing both the speed and force of the contraction, at least over the short-term.
Advertisement

In the new study, the researchers wanted to see if this effect could be sustained. For this, they used genetic engineering to create a strain of mice whose cells produced higher-than-normal levels of an enzyme called Ribonucleotide Reductase that converts the precursor of ATP, adenosine-5'-diphosphate or ADP, to dADP, which, in turn, is rapidly converted to dATP.

The researchers found that increased production of the enzyme Ribonucleotide Reductase increased the concentration of dATP within heart cells approximately tenfold, and even though this level was still less than one to two percent of the cell's total pool of ATP, the increase led to a sustained improvement in heart muscle function, with the genetically engineered hearts contracting more quickly and with greater force.

"The same pathway that heart cells use to make the building blocks for DNA during embryonic growth makes dATP to supercharge contraction when the adult heart is mechanically stressed," Murry said.

Importantly, the elevated dATP effect was achieved without imposing additional metabolic demands on the cells, suggesting the modification would not harm the cell's functioning over the long-term.

The findings suggest that treatments that elevate dATP levels in heart cells may prove to be an effective treatment for heart failure.

The study has been published in the journal Proceedings of the National Academy of Sciences (PNAS).

Source: ANI
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Genetics & Stem Cells News

 Stem Cell Treatment Resolves Perianal Fistulas in Crohn's Disease
Can stem cell therapy cure fistula? Yes, treatment with stem cells has had a success rate when used in perianal fistulas due to Crohn's Disease.
First Effective Preclinical Models for Most Common Genetic Cause of Leigh Syndrome
In zebrafish models of SURF1 mitochondrial disease, scientists have discovered drugs to prevent neurological decompensation.
Gene Therapy for Rare Eye Disease
New study advances intravitreal gene therapy platform to develop safe and effective therapies for visual loss in Usher Syndrome, rare disorder.
Autism-associated Mutation: New Insights
The study experiments shed light on a rare example of how autism-associated mutation could altered nuclear dynamics.
How Genomic Variants Could Help Diagnose Rare Genetic Disorders
A genotype-first approach to patient care involves selecting patients with specific genomic variants and then studying their traits and symptoms.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Heart Damage After Attack can be Reversed Through Gene Therapy Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests