About Careers Internship MedBlogs Contact us
Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes

Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes

Font : A-A+

  • Understanding alkylating chemotherapy drugs has lead to the discovery of tumor cell’s DNA damage mending mechanism
  • A group of proteins was found to be clustered near the spots on the DNA that had been alkylated
  • Cells that lacked a key member of this protein complex were more likely to die if they were treated with alkylating drugs

Cells are controlled by its DNA blueprint and alteration of these blueprints can lead to its death. To keep DNA in working order, cells have tricks to detect and mend the damaged DNA found a new study published in Nature journal.

Now, researchers at Washington University School of Medicine in St. Louis report that they have found a previously unknown way that cells sense a kind of damage induced by certain chemotherapy drugs. The findings, published Nov. 8 in the journal Nature, could have important implications for treating cancer.


Alkylating chemotherapeutic drugs and their mechanism in effect

Some of the oldest chemotherapy drugs are known as alkylating agents because they kill cancer cells by adding groups of carbon and hydrogen atoms to - or alkylating - DNA. The extent of the alkylation damage overwhelms the cells' ability to heal themselves via their DNA repair pathways.

And some tumors are abnormally dependent on proteins involved in DNA repair, such that knocking out those proteins kills the tumor cells.

"We found that human cells can sense alkylation damage and mobilize a repair complex specifically suited to repair this kind of injury," said senior author Nima Mosammaparast, MD, PhD, an assistant professor of pathology and immunology, and co-leader of the DNA Metabolism and Repair Working Group at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

"Knocking out this complex may be a way to increase the potency of certain chemotherapy drugs, or to specifically target tumor cells that have become dependent on the repair complex."

Forceful Alkylating drugs can cause Alkylation in tumor cells

Alkylation can happen naturally, which is why cells have this repair system in the first place. Also, certain chemotherapy drugs force it to happen. Busulfan, used to treat leukemia, and temozolomide, prescribed for brain tumors, alkylate many spots along DNA.

It is difficult for the genetic blueprint to be copied accurately where DNA has been alkylated, so such alkylation damage kills the cells.

Studying cells treated with alkylating chemotherapy drugs or with drugs that lead to other kinds of DNA damage, the researchers determined how cells try to mend DNA damage caused specifically by alkylating agents. They identified a group of proteins that clustered near the spots on the DNA that had been alkylated.

Cells that lacked a key member of this protein complex were more likely to die if they were treated with alkylating drugs than cells that had the protein, indicating the importance of the protein complex in repairing DNA. Lacking the key protein made no difference when the DNA was damaged in other ways.

These findings suggest that sensing alkylation damage is a major primary defense against chemotherapy drugs such as busulfan and other alkylating agents. Interfering with this repair complex could amplify the killing power of such drugs and potentially even avert or undermine drug resistance.

After a successful course of chemotherapy, tumors sometimes recur tougher than before, having become resistant to the drugs from the first round of treatment.

"There's some evidence now that overexpressing components of this signaling pathway may be how some tumors become resistant to chemotherapy," Mosammaparast said. "Blocking this pathway could be a way to make resistant tumors sensitive again."

Recurrent tumors are not the only ones that may have high levels of DNA repair proteins. Some tumors that have never encountered alkylating chemotherapy drugs have high levels of key alkylation-repair proteins. And when they do, it portends poorly for the patients.

"In some kinds of pancreatic, prostate and lung cancer, overexpressing components of this pathway indicates a significantly worse prognosis," Mosammaparast said.

There is a possible silver lining, though. Tumors that have high levels of key alkylation repair proteins are often dependent on them, meaning that if those proteins were somehow inhibited, the cells would die.

Normal cells are not dependent on this alkylation repair pathway to the same degree. Other repair systems can handle the level of alkylating DNA damage typically encountered by a healthy cell.

"That could be an opening for a chemotherapy drug," Mosammaparast said. "We may be able to design a drug that is toxic to tumors but not to normal cells by targeting this alkylation repair pathway."

The drug olaparib, approved in 2014 to treat hereditary ovarian cancer, exploits a similar vulnerability. It targets tumors that are unusually dependent on a repair pathway that stitches DNA back together after it has been cut into pieces. Olaparib blocks that pathway, and without it, the cancerous cells die.

  1. Joshua R. Brickner, Jennifer M. Soll, Patrick M. Lombardi, et.al. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair, Nature (2017).doi:10.1038/nature24484

Source: Eurekalert

Citations   close

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Rishika Gupta. (2017, November 27). Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes. Medindia. Retrieved on Aug 09, 2022 from https://www.medindia.net/news/healthwatch/understanding-cells-dna-repair-mechanism-may-improve-chemotherapy-outcomes-174979-1.htm.

  • MLA

    Rishika Gupta. "Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes". Medindia. Aug 09, 2022. <https://www.medindia.net/news/healthwatch/understanding-cells-dna-repair-mechanism-may-improve-chemotherapy-outcomes-174979-1.htm>.

  • Chicago

    Rishika Gupta. "Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes". Medindia. https://www.medindia.net/news/healthwatch/understanding-cells-dna-repair-mechanism-may-improve-chemotherapy-outcomes-174979-1.htm. (accessed Aug 09, 2022).

  • Harvard

    Rishika Gupta. 2021. Understanding tumor Cell's Repair Mechanism may Improve Chemotherapy Outcomes. Medindia, viewed Aug 09, 2022, https://www.medindia.net/news/healthwatch/understanding-cells-dna-repair-mechanism-may-improve-chemotherapy-outcomes-174979-1.htm.


News A-Z
What's New on Medindia
Test Your Knowledge on Lung Transplantation
Baldness can be Cured and Prevented: let us see How!
Drinking Beer or Wine Every Day Could Cause Age-related Diseases
View all
Recommended Reading
News Archive
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Chronic Lymphocytic Leukemia Hodgkins Lymphoma Non-Hodgkins Lymphoma Chemotherapy Chemotherapy Drugs Tumor Markers For Cancer Diagnosis and Prognosis Peritoneal Cancer Rhabdomyosarcoma Male Breast Cancer Tumor Lysis Syndrome 

Most Popular on Medindia

Sinopril (2mg) (Lacidipine) Find a Doctor Post-Nasal Drip Sanatogen Daily Calorie Requirements The Essence of Yoga Turmeric Powder - Health Benefits, Uses & Side Effects Find a Hospital Calculate Ideal Weight for Infants Color Blindness Calculator
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close