About Careers Internship MedBlogs Contact us
Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells

Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells

Font : A-A+

  • Cells within the human pancreas can be stimulated to develop into glucose-responsive beta cells.
  • In type 2 diabetes, patients produce insulin but their beta cells may become dysfunctional over time.
  • Thus, this finding may help develop regenerative cell therapies for type-1 diabetes.

The existence of progenitor cells within the human pancreas that can be stimulated to develop into glucose-responsive beta cells has been confirmed by a research team at the University of Miami Miller School of Medicine.

These significant findings open the door to developing regenerative cell therapies for those living with type 1 diabetes, addressing a major challenge that stands in the way of discovering a biological cure for the disease.


Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells

The notion that the pancreas harbors progenitor cells with the potential to regenerate islets has been hypothesized for decades, but not conclusively demonstrated. DRI scientists have now been able to identify the exact anatomic location of these stem cells and validate their proliferative potential and ability to turn into glucose-responsive beta cells.

Turning stem cells into functional islets
"Our in-depth study of these pancreatic stem cells may help us tap into an endogenous cell supply 'bank' for beta cell regeneration purposes and, in the future, lead to therapeutic applications for people living with type 1 diabetes," said Juan Dominguez-Bendala, Ph.D., DRI director of pancreatic stem cell development for translational research and co-principal investigator of the study alongside Dr. Ricardo Pastori, Ph.D., director of molecular biology. "Together with our previous findings using BMP-7 to stimulate their growth, we believe that we may be able to induce these stem cells to become functional islets."

The DRI team previously reported that bone morphogenetic protein 7 (BMP-7), a naturally occurring growth factor already approved by the Food and Drug Administration (FDA) for clinical use, stimulates progenitor-like cells within cultured human non-endocrine pancreatic tissue. In the most recent study, the researchers went on to demonstrate that those stem cells that respond to BMP-7 reside within the pancreatic ductal and glandular network of the organ.

Additionally, the cells are characterized by the expression of PDX1, a protein necessary for beta cell development, and ALK3, a cell surface receptor that has been associated with the regeneration of multiple tissues. Using "molecular fishing" techniques, they were able to selectively extract the cells that expressed PDX1 and ALK3, grow them in a dish and demonstrate that they can proliferate in the presence of BMP-7 and later differentiate into beta cells. Together, the combined study results may help move researchers closer to developing regenerative cell therapies for type 1, and potentially type 2, diabetes.

In type 1 diabetes, the insulin-producing cells of the pancreas have been mistakenly destroyed by the immune system, requiring patients to manage their blood sugar levels through a daily regimen of insulin therapy.

In type 2 diabetes, patients are able to produce some insulin, but their beta cells may become dysfunctional over time. Islet transplantation has allowed some patients with type 1 diabetes to live without the need for insulin injections after receiving infusions of donor cells, however there are not enough cells to treat the millions of patients who can benefit. Thus far, research efforts have focused primarily on creating more pancreatic cells for transplant from sources like embryonic (hESc), pluripotent (hPSc) and adult stem cells, and porcine (pig) islets, among others. A more efficient and potentially safer solution could lie in regenerating a patient's own insulin-producing cells, sidestepping the need to transplant donor tissue altogether and eliminating other immune-related roadblocks.

Hope to end pancreas transplantation
"The ability to offer regenerative medicine strategies to restore insulin production in the native pancreas could one day replace the need for transplantation of the pancreas or insulin-producing cells. In type 1 diabetes, this would require abrogation of autoimmunity to avoid immune destruction of the newly formed insulin producing cells. For this reason our current efforts are converging on immune tolerance induction without the need for life long anti-rejection drugs," said Camillo Ricordi, M.D., director of the Diabetes Research Institute and Stacy Joy Goodman Professor of Surgery.

References :
  1. Mirza Muhammad Fahd Qadir, Silvia Álvarez-Cubela et al. P2RY1/ALK3-Expressing Cells within the Adult Human Exocrine Pancreas Are BMP-7 Expandable and Exhibit Progenitor-like Characteristics, Cell Reports DOI: https:doi.org/10.1016/j.celrep.2018.02.006

Source: Eurekalert

Citations   close

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chrisy Ngilneii. (2018, February 28). Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells. Medindia. Retrieved on Aug 10, 2022 from https://www.medindia.net/news/healthwatch/potential-therapy-for-type-1-diabetes-found-in-pancreatic-cells-177455-1.htm.

  • MLA

    Chrisy Ngilneii. "Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells". Medindia. Aug 10, 2022. <https://www.medindia.net/news/healthwatch/potential-therapy-for-type-1-diabetes-found-in-pancreatic-cells-177455-1.htm>.

  • Chicago

    Chrisy Ngilneii. "Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells". Medindia. https://www.medindia.net/news/healthwatch/potential-therapy-for-type-1-diabetes-found-in-pancreatic-cells-177455-1.htm. (accessed Aug 10, 2022).

  • Harvard

    Chrisy Ngilneii. 2021. Potential Therapy for Type-1 Diabetes Found in Pancreatic Cells. Medindia, viewed Aug 10, 2022, https://www.medindia.net/news/healthwatch/potential-therapy-for-type-1-diabetes-found-in-pancreatic-cells-177455-1.htm.


News A-Z
What's New on Medindia
Test Your Knowledge on Lung Transplantation
Baldness can be Cured and Prevented: let us see How!
Drinking Beer or Wine Every Day Could Cause Age-related Diseases
View all
Recommended Reading
News Archive
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Pancreatic Cancer Diabetic Retinopathy Diabetes Diabetic Diet Diabetes - Essentials Parkinsons Disease Surgical Treatment Diabetes - Self-Monitoring of Blood Glucose (SMBG) Insulin Delivery Devices Diabetes and Exercise Reiki and Pranic Healing 

Most Popular on Medindia

Daily Calorie Requirements A-Z Drug Brands in India Find a Hospital Nutam (400mg) (Piracetam) Hearing Loss Calculator Sinopril (2mg) (Lacidipine) Blood Donation - Recipients Turmeric Powder - Health Benefits, Uses & Side Effects Color Blindness Calculator Post-Nasal Drip
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use