New technology for cancer immunotherapy developed at Johns Hopkins University School of Medicine. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGF-beta enhance the efficacy of cancer immunotherapy.
- A new class of immunotherapy drugs has been developed at Johns Hopkins University School of Medicine.
- These drugs act on cells that are causing tumor growth.
- Treatment with these drugs results in a significant decrease of tumor growth, even against cancers that do not respond to existing immunotherapy.
Enabling immune cells to fight cancer
Many tumors produce high levels of a protein that promotes the development of Tregs. Bedi's team reasoned that since Tregs in the tumor shut down immune responses against tumor cells, turning off Tregs may help immunotherapy work better.
"This is especially challenging because Tregs are not only induced by the TGF-beta (transforming growth factor-beta) protein made by tumor cells, but make their own TGF-beta to maintain their identity and function in the tumor," says Bedi. Tregs also make cytotoxic T-lymphocyte associated protein 4 (CTLA-4), which prevents anti-tumor immune cells from acting.
The solution: Y-traps
To address this problem, the researchers invented a new class of immunotherapy drugs they called Y-traps. Each Y-trap molecule is an antibody shaped like a Y and fused to a molecular "trap" that captures other molecules nearby, rendering them useless.
The researchers first designed a Y-trap that targets CTLA-4 and traps TGF-beta. This Y-trap disables both CTLA-4 and TGF-beta, which allows anti-tumor immune cells to fight the tumor and turns down Treg cells.
"Tregs have long been a thorn in the side of cancer immunotherapy," says Bedi. "We've finally found a way to overcome this hurdle with this CTLA-4-targeted Y-trap."
The research team designed a Y-trap targeting PD-L1 and trapping TGF-beta. Tested against the same engineered mice, they found that their Y-trap works better than just PD-L1-targeting drugs atezolizumab and avelumab. Again, this Y-trap slowed the growth of tumors that previously had not responded to drugs.
"These first-in-class Y-traps are just the beginning. We have already invented a whole family of these multifunctional molecules based on the Y-trap technology. Since mechanisms of immune dysfunction are shared across many types of cancer, this approach could have broad impact for improving cancer immunotherapy," says Bedi. "Y-traps could also provide a therapeutic strategy against tumors that resist current immune checkpoint inhibitors."
"This approach appears to be an innovative strategy, and an exciting technical accomplishment to target multiple suppressive mechanisms in the tumor microenvironment," says Robert Ferris, M.D., Ph.D., professor of oncology and director of the Hillman Cancer Center at the University of Pittsburgh. Ferris was not connected with the study. "I look forward to seeing its translation into the clinic."
Bedi envisions using Y-traps not only for treatment of advanced, metastatic cancers, but also as a neoadjuvant therapy to create a "vaccine" effect, that is, giving them to patients before surgery to prevent recurrence of the disease.
References:
- Rajani Ravi, Kimberly A. Noonan et al. Bifunctional Immune Checkpoint-targeted Antibody-ligand Traps that Simultaneously Disable TGF-beta Enhance the Efficacy of Cancer Immunotherapy, Nature Communications DOI: 10.1038/s41467-017-02696-6