Bacteria could be programmed to efficiently produce drugs, thanks to breakthrough research into synthetic biology using engineering principles, from the University of Warwick and the University of Surrey.
Highlights
- With the help of synthetic technology, bacteria can now be programmed to produce drugs.
- Unique system has been developed to allocate essential cellular resources to both synthetic circuit and host cell - allowing both to survive and function properly.
- Adding synthetic circuitry to cells could enable them to produce antibiotics and other valuable drugs.
Synthetic circuitry can be added to cells to enhance them and make them perform bespoke functions - providing vast new possibilities for the future of healthcare and pharmaceuticals, including the potential for cells specially programmed to produce novel antibiotics and other useful compounds.
A cell only has a finite amount of ribosomes, and the synthetic circuit and host cell in which the circuitry is inserted both compete for this limited pool of resources. It is essential that there are enough ribosomes for both, so they can survive, multiply and thrive. Without enough ribosomes, either the circuit will fail, or the cell will die - or both.
Using the engineering principal of a feedback control loop, commonly used in aircraft flight control systems, the researchers have developed and demonstrated a unique system through which ribosomes can be distributed dynamically - therefore, when the synthetic circuit requires more ribosomes to function properly, more will be allocated to it, and less allocated to the host cell, and vice versa.
Declan Bates, Professor of Bioengineering at the University of Warwick’s School of Engineering and Co-Director, Warwick Integrative Synthetic Biology Centre (WISB) commented:
José Jiménez, Lecturer in Synthetic Biology at the University of Surrey’s Faculty of Health and Medical Sciences:
Ribosomes live inside cells, and construct proteins when required for a cellular function. When a cell needs protein, the nucleus creates mRNA, which is sent to the ribosomes - which then synthesise the essential proteins by bonding the correct amino acids together in a chain.
Reference
- Alexander P. S. Darlington, Juhyun Kim, José I. Jiménez & Declan G. Bates. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes, Nature communications (2018).DOI:10.1038/s41467-018-02898-6
Source-Eurekalert