About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Sickle Cell Cure – Genetic Engineering Shows The Way
Advertisement

Sickle Cell Cure – Genetic Engineering Shows The Way

Font : A-A+

Highlights
  • Sickle cell anemia is an inherited disorder that causes defective hemoglobin to be produced in the red blood cells.
  • The defective hemoglobin leads to various clinical symptoms, and may reduce life expectancy.
  • Presently, stem cell transplant from a healthy donor is the only hope for a cure.
  • In this research, scientists have tried to fix the disease-causing defective gene in the patient’s own stem cells, and re-infusing them, paving the way for a possible cure.

Genetic modification of defective stem cells from sickle cell patients can correct the mutation, and lead to the formation of healthy hemoglobin, indicates a recent research from the University of California, Berkeley, UC San Francisco Benioff Children's Hospital Oakland Research Institute (CHORI) and the University of Utah School of Medicine.

Aim of the Study
Scientists hope that correcting the mutation in the stem cells of patients suffering from sickle cell disease , and transplanting back into the patient could be a potential cure for the disease.

Advertisement

Sickle Cell Cure – Genetic Engineering Shows The Way

"We're very excited about the promise of this technology," said Jacob Corn, a senior author on the study at UC Berkeley. "There is still a lot of work to be done before this approach might be used in the clinic, but we're hopeful that it will pave the way for new kinds of treatment for patients with sickle cell disease."

The goal of this research is to develop genetic engineering-based technology to correct the disease-causing mutation in the patient's own stem cells, and to ensure that new red blood cells formed thereafter are healthy.
Advertisement

Details of the Research

The team of scientists performed CRISPR-Cas9 gene editing to correct the defective mutated gene in the stem cells of patients suffering from sickle cell anemia. For the first time, they have managed to correct the mutation in enough number of stem cells, that would lead to the production of healthy hemoglobin, not possible earlier, and alleviate the symptoms of the disease.

Initial tests in mice, using the genetically engineered stem cells have shown that they remained for at least four months after transplantation, indicating that the therapy would be long lasting.

"This is an important advance because for the first time we show a level of correction in stem cells that should be sufficient for a clinical benefit in persons with sickle cell anemia," said co-author Mark Walters, a pediatric hematologist and oncologist and director of UCSF Benioff Oakland's Blood and Marrow Transplantation Program.

About Sickle Cell Anemia
Sickle cell disease is an autosomal recessive genetic disorder in both copies of the gene coding for beta-globin, a protein occurring in hemoglobin, the oxygen-carrying pigment found in red blood cells.

This genetic defect causes the hemoglobin molecules to stick to each other, deforming the red cells into the typical "sickle" shape. These misshapen cells get clump together within the blood vessels, and block them, causing signs and symptoms of ischemic tissue damage.

Other clinical features include anemia due to a reduced oxygen carrying capacity, pain, organ failure, and importantly a reduced life expectancy.

Sickle cell disease is particularly common in African-Americans and the sub-Saharan African population, and affects millions of people globally. It is estimated that 1 out of every 365 Black or African-American born suffers from sickle cell disease.

Scope of The Research and Future Plans
  • The researchers stress that future pre-clinical work would necessitate additional optimizations, large-scale mouse studies and rigorous safety measures in place.
  • Corn and his lab have teamed up with Walters, an expert in developing curative therapies for sickle cell disease including bone marrow transplant and gene therapy.
  • They hope to begin an early-phase clinical trial to try out this novel treatment within the next five years
  • Additionally, other research groups could employ the approach described in this study to develop treatments for other hematological (blood-related) disorders such as β-thalassemia, chronic granulomatous disease, severe combined immunodeficiency (SCID), and other rare conditions like Wiskott-Aldrich syndrome, Fanconi anemia, and also HIV infection
"Sickle cell disease is just one of many blood disorders caused by a single mutation in the genome," Corn said. "It's very possible that other researchers and clinicians could use this type of gene editing to explore ways to cure a large number of diseases."

Says co-senior author, Dana Carroll of the University of Utah, who co-developed one of the first genome editing techniques over a decade ago. "It's very gratifying to see gene editing technology being brought to practical applications."

References :
  1. How is Sickle Cell Disease Treated? - (https://www.nhlbi.nih.gov/health/health-topics/topics/sca/treatment)
  2. Sickle Cell Disease - Data and Statistics - (http://www.cdc.gov/NCBDDD/sicklecell/data.html)
Source: Medindia
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Coffee May Help You Fight Endometrial Cancer
Fermented Skin Care
Television Binge-Watching May Boost the Risk of Deadly Blood Clots
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Surgical Treatment Genetics and Stem Cells Christianson Syndrome 

Recommended Reading
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
CRISPR
CRISPR is a gene editing tool that is revolutionizing medical care with prospective cure for ......
Sickle Cell Anemia
Sickle cell anemia (SCA) is a genetic blood disorder caused by abnormal inherited hemoglobin. ......
Quiz on Sickle Cell Anemia
Sickle cell anemia is a genetic disorder that affects blood and necessitates frequent blood ......
Christianson Syndrome
Christianson syndrome is a condition that occurs due to mutations (abnormal changes) in the gene SLC...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)