Medindia
Advertisement

Gene Transfer Combats Diabetes-linked Heart Dysfunction

by Mohamed Fathima S on March 28, 2019 at 11:53 AM

Gene Transfer Combats Diabetes-linked Heart Dysfunction
Heart dysfunction caused by diabetes can be combated by a gene transfer technique, reveal researchers. The research is published in the journal Human Gene Therapy.

Working with mice, the researchers showed that a single injection to promote the expression of the hormone urocortin 2 (UCn2) increased left ventricle function and improved how the body processed glucose. The study could lead to new clinical treatments for diabetes-related left ventricle dysfunction, they say.
Advertisement


Dr. Kirk Hammond, the corresponding author on the study, explained that a single administration of an agent that both reduces blood sugar and increases heart function would be attractive to patients with diabetes. These patients often must adhere to complicated medical regimens, he explains, and therefore often have trouble complying with their care instructions.

Diabetes affects 9 percent of adults worldwide, including 29 million Americans. Nearly 25 percent of VA's patient population have diabetes. It increases the risk of cardiovascular disease, and death rates from heart disease are two to four times higher for adults with diabetes.
Advertisement

One major problem caused by diabetes is left ventricle dysfunction. The ventricles are the largest chambers of the heart. The right ventricle pumps blood to the lungs to receive oxygen, while the left ventricle pumps the blood to the rest of the body. Diabetes can cause the walls of the left ventricle to thicken and become fibrous, which stops it from pumping properly. Diabetes-related left ventricle dysfunction represents an unmet medical need, according to the researchers. As they explain, the prevalence of left ventricle dysfunction is increasing as diabetes rates increase globally.

Previous studies by the research team showed that UCn2 gene transfer increases cardiac function in normal mice and increases function in the failing heart (caused by heart attack). In the current study, the researchers wanted to see whether this same gene transfer technique would improve heart dysfunction caused by diabetes.

Gene transfer therapy involves positively changing how the body's genes operate using genetic material.

For this study, the researchers injected mice with a non-infectious virus called adeno-associated virus type 8, which carried the gene for UCn2. The virus vector goes mainly to the liver, where it manufactures UCn2. UCn2 is then released into the blood, where it interacts with specific receptors, which can improve heart function and increase glucose disposal. Glucose disposal refers to the uptake of glucose from the blood into tissues of the body.

To trigger diabetes, the researchers fed mice a diet of 45 percent fat, 35 percent carbohydrate, and 20 percent protein. This dietary balance is similar to the standard diet in Western countries such as the United States. A diet high in fats and sugars, as is common in a Wester diet, is linked with an increased risk of diabetes. Mice fed the Western diet for 30 weeks showed increased blood glucose and weight gain, along with reduced heart function compared with mice eating a diet lower in fat and sugar.

After 30 weeks on the diets, the mice received a single injection of the UCn2 gene transfer, or an injection of saline. Results show that the single injection of UCn2 gene transfer led to better left ventricle function after 10 weeks, compared with the mice given the saline placebo. Mice in the UCn2 group also had better glucose disposal, as well as reduced fat build-up in the liver.

Ten weeks after the injection, mice given the gene transfer had a 20-fold increase in UCn2 concentration in their blood. This increase was linked to reduced fasting blood glucose levels and better glucose tolerance, relative to the mice given saline. The increase in UCn2 led to increases of 38 percent for systolic and 33 percent for diastolic left ventricle function.

Although additional studies will be required, this therapy could lead to new treatment techniques for people with diabetes in clinical settings, according to the researchers. They call the possibility of a one-time treatment with enduring benefits on glucose disposal and left ventricle function "an attractive and unique therapeutic strategy."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
'Hybrid Immunity' may Help Elude COVID-19 Pandemic
Stroop Effect
Plant-Based Diet may Reduce the Risk of COVID-19
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Heart Healthy Heart Statins Mitral Valve Prolapse Aortic Valve Stenosis Weaver Syndrome Pericarditis 

Recommended Reading
Diabetes and Hypertension
Diabetes and hypertension (high blood pressure) are significant health problems worldwide, but like ...
Diabetes - Essentials
Diabetes is a metabolic disease caused by insulin deficiency that leads to high blood sugar levels ....
Diabetes Diet Plan
Diet plays a significant role in controlling diabetes. Most cases of diabetes are preventable with ....
Diabetes and Exercise
Regular exercise especially in type II diabetes not only helps reduce the sugar but also reduces ......
Aortic Valve Stenosis
Aortic valve Stenosis is an abnormal narrowing of the c valve. Symptoms include angina, and that of ...
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
Mitral Valve Prolapse
Mitral Valve Prolapse is a relatively common condition and causes leakage of blood through the valve...
Pericarditis
Pericarditis occurs when the pericardium gets inflamed. Pericarditis is characterized by severe ches...
Statins
Statins are new wonder drugs that are proving to be efficacious, not merely in relieving symptoms bu...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use