About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

First Reproduction of Tumor Chromosomal Translocations in Human Cells

by Himabindu Venkatakrishnan on June 5, 2014 at 3:30 PM
Font : A-A+

 First Reproduction of Tumor Chromosomal Translocations in Human Cells

For the first time, scientists have been able to reproduce chromosomal translocations associated with two types of cancer, namely acute myeloid leukemia and Ewing's sarcoma at the Spanish National Cancer Research Centre (CNIO) and the Spanish National Cardiovascular Research Centre (CNIC). The discovery, published today in the journal Nature Communications, opens the door to the development of new therapeutic targets to fight these types of cancer.

The study was carried out by Sandra Rodriguez-Perales − from CNIO's Molecular Cytogenetics Group, led by Juan Cruz Cigudosa − and Juan Carlos Ramírez and Raúl Torres, from CNIC's Viral Vector Technical Unit. The researchers have shown that it is possible to produce chromosome modifications in human cells that are genetically identical to those observed in leukaemia and other types of human cancer.

Advertisement

This new technology offers two main advantages based on the use of molecular tools to manipulate the genome: firstly, working models that had not existed up until now for the study of tumour biology and, secondly, their application will eventually allow for the study of new therapeutic targets and therapies.

The alterations leading to tumour development are due to multiple changes in cell physiology and specifically in the cell genome. In leukaemia and other tumours called sarcomas, exchanges of large DNA fragments occur between different chromosomes, a phenomenon known as chromosomal translocations. As the study's authors point out, these translocations are necessary both for the generation and the progression of a number of neoplastic processes.
Advertisement

"The study of this type of tumours has been problematic up to now due to the lack of cell models and the appropriate animal models", says CNIC researcher Juan Carlos Ramírez, who adds that the difficulty of generating these chromosomal translocations had limited the availability of cells with this mark of the disease.

Breaking chromosomes to study cancer

Using RNA-Guided Endonuclease (RGEN) technology or CRISPR/Cas9 genome engineering technology, CNIO and CNIC researchers have shown that it is possible to obtain such chromosomal translocations. In this way, they have managed to reproduce chromosomal translocations in human stem cells from blood and mesenchymal tissue that are identical to those observed in patients with acute myeloid leukemia (a blood and bone marrow cancer) or Ewing's sarcoma (a type of bone tumour that affects children and teenagers).

"With this breakthrough it is possible to generate cell models with the same alterations as observed in tumour cells from patients, which will allow us to study their role in tumour development", says CNIO researcher Sandra Rodríguez-Perales. "In this way, it will be possible to experimentally recapitulate the necessary subsequent steps for normal cells to transform into cancer cells".

The researchers have used the powerful RGEN tool, which was developed at the beginning of 2013, for gene manipulation in eukaryotic cells, including human ones. It is based on the design of a small RNA (RNAsg) that is complementary and specific to a 20 nucleotide DNA region. The binding of the RNAsg to the DNA acts as a signal for the Cas9 enzyme to produce a cut on the edge of the marked DNA. The system is very specific and efficient and allows for cuts to be made in the DNA's double helix wherever the researchers need to do so.

Rodríguez-Perales, Torres and Ramírez have shown that by transferring the RGEN components into primary human cells, regions of the exchanged chromosomes in some tumours can be marked, thus generating cuts in those chromosomes.

"When the DNA repair machinery tries to repair those cuts, it drives the generation of a translocation between two different chromosomes, in many cases reciprocally between the two chromosomes implicated", says CNIC researcher Raúl Torres.

The study's authors conclude by stating that the use of this technology will also allow for the clarification of how and why chromosomal translocation occurs, which without doubt will allow new anti-cancer therapeutic strategies to be tackled.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
 Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
Is Telomere Shortening a Sign of Cellular Aging?
Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.
Why Is Integrated Structural Biology Important for Cystic Fibrosis?
Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.
Impact of Age-Related Methylation Changes on Human Sperm Epigenome
Link between advanced paternal age and higher risks for reproductive and offspring medical problems has been discovered.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

First Reproduction of Tumor Chromosomal Translocations in Human Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests