About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Exercise Can Reverse Age-related Memory Decline: Study

by VR Sreeraman on November 20, 2008 at 1:31 PM
 Exercise Can Reverse Age-related Memory Decline: Study

Besides reducing the waistline, exercise can reverse the age-related decline in the production of neural stem cells in the hippocampus of the brain, confirms a new mice-based study.

The study suggests that this happens because exercise restores a brain chemical which promotes the production and maturation of new stem cells.

Advertisement

Neural stem cells and progenitor cells differentiate into a variety of mature nerve cells which have different functions, a process called neurogenesis.

There is evidence that when fewer new stem or progenitor cells are produced in the hippocampus, it can result in impairment of the learning and memory functions. The hippocampus plays an important role in memory and learning.
Advertisement

The study, "Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice," was carried out by Chih-Wei Wu, Ya-Ting Chang, Lung Yu, Hsiun-ing Chen, Chauying J. Jen, Shih-Ying Wu, Chen-Peng Lo, Yu-Min Kuo, all of the National Cheng Kung University Medical College in Taiwan.

The study appears in the November issue of the Journal of Applied Physiology, published by The American Physiological Society.

The researchers built on earlier studies that found that the production of stem cells in the area of the hippocampus known as the dentate gyrus drops off dramatically by the time mice are middle age and that exercise can slow that trend. In the current study, the researchers wanted to track these changes in mice over time, and find out why they happen.

One hypothesis the researchers investigated is that the age-related decline in neurogenesis is tied to a rise in corticosterone in middle age. Elevation of corticosterone has been associated with a drop in the production of new stem cells in the hippocampus.

The second hypothesis is that nerve growth factors, which encourage new neural cell growth but which decrease with age, account for the drop in neurogenesis.

pecifically, the study looked at whether a decrease in brain-derived neurotrophic growth factor leads to a decline in new neural stem cells.

The researchers trained young (3 months), adult (7 months), early middle-aged (9 months), middle-aged (13 months) and old (24 months) mice to run a treadmill for up to one hour a day.

The study tracked neurogenesis, age, exercise, serum corticosterone levels and brain-derived neurotrophic factor (BDNF) and its receptor TrkB levels in the hippocampus.

he researchers focused on middle age as a critical stage for the decline of neurogenesis in the mice. As expected, the study found that neurogenesis drops off sharply in middle-aged mice. For example, the number of neural progenitor and mitotic (dividing) cells in the hippocampus of middle-aged mice was only 5 percent of that observed in the young mice.

The researchers also found that exercise significantly slows down the loss of new nerve cells in the middle-aged mice. They found that production of neural stem cells improved by approximately 200 percent compared to the middle-aged mice that did not exercise. In addition, the survival of new nerve cells increased by 170 percent and growth by 190 percent compared to the sedentary middle-aged mice. Exercise also significantly enhanced stem cell production and maturation in the young mice. In fact, exercise produced a stronger effect in younger mice compared to the older mice.

Source: ANI
SRM
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Exercise Can Reverse Age-related Memory Decline: Study Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests