About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Excess Fat in the Heart Increases Heart Failure Risk in Diabetics

by Hannah Joy on January 6, 2018 at 6:02 PM
Font : A-A+

Excess Fat in the Heart Increases Heart Failure Risk in Diabetics

Excess fat in the heart can alter the structure and function of mitochondria, which is responsible for the two- to five-fold increased risk of heart failure in diabetic people.

The heart is the most energy-hungry organ in the body. Just like a combustion engine burning fuel to power the pistons, healthy heart cells consume fuel molecules to create the necessary energy to keep the heart pumping. This essential energy production takes place inside mitochondria, the self-contained "powerplant" organelles inside cells.

Advertisement


Although mitochondria in a healthy heart primarily use fatty acids as fuel, they can easily adapt to use other fuel molecules as needed, including glucose, lactate, and ketone bodies. Diabetes, however, reduces the heart muscle's metabolic adaptability and causes heart cells to overuse fat as a metabolic fuel.

The study, published in Circulation Research, found that this cardiac lipid overload leads to numerous small, misshapen mitochondria that don't produce energy as efficiently as normal mitochondria.
Advertisement

Previous research from the UI team has suggested that problems with mitochondrial energy production may play a role in heart failure associated with diabetes.

"Diabetes, which affects almost 30 million Americans, significantly increases the risk of heart failure, and one of the cardinal manifestations of the hearts of people with diabetes is the tendency to overuse fat as a metabolic fuel, which ultimately leads to mitochondrial and cardiac damage," explains study leader E. Dale Abel, MD, PhD, professor and departmental executive officer of internal medicine at the UI Carver College of Medicine and director of the Fraternal Order of Eagles Diabetes Research Center at the UI.

"We have demonstrated and detected how increasing the amount of fat (lipid) that the heart consumes leads to dramatic changes in the structure and function of the mitochondria in the heart. These studies provide a new window into how these changes to mitochondria could occur in the lipid-overloaded heart."

The UI team used genetically modified mice that mimic the increased fatty acid uptake (lipid overload) that characterizes diabetes to investigate the consequences of cardiac lipid overload on mitochondria. A novel 3-D electron microscopic cellular imaging technique developed by colleagues in Germany allowed the researchers to directly observe the structural changes to the mitochondria - rather like putting on a virtual reality headset inside the cardiac muscle cell, says Abel.

In the mouse model, lipid uptake to heart is doubled. This modest increase resulted in mitochondria that became thinner and more twisted than mitochondria in healthy heart cells. These structural changes (almost like a noodle snaking through the heart) lead to an appearance of mitochondrial fragmentation when imaged by conventional electron microscopy.

The study also revealed the molecular cause of the change in mitochondrial structure. Prolonged lipid overload leads to increased levels of damaging substances called reactive oxygen species (ROS). The excess ROS disrupts the mitochondrial network by altering the activity of several important proteins that help control the size and shape of mitochondria.

Removing the excess ROS by overexpressing a molecule that helps "mop up" ROS molecules restored normal-looking mitochondria, which worked properly, despite the lipid overload.

Surprisingly, using the same approach to remove ROS in normal heart cells led to mitochondria that were four times as large as normal, suggesting that ROS levels are inversely proportional to mitochondria size.

The findings suggest that cardiac lipid overload disrupts normal mitochondrial structure, which may impair energy production and compromise heart function.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
Toothache
World AIDS Day 2021 - End Inequalities, End AIDS
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cholesterol Diabetes - Self-Monitoring of Blood Glucose (SMBG) Diabetes and Exercise Diet Lifestyle and Heart Disease Congenital Heart Disease Cholesterol - The Enigma Chemical Liposuction Heart Healthy Heart Glycemic Index 

Recommended Reading
Body Fat
Our body is composed of water, fat, protein, carbohydrates, vitamins and minerals. The fat content ....
Obesity
Obesity is a condition where there is excess accumulation of body fat which poses a risk to the ......
Excess Fat Helped 39-year-old Survive Flesh-eating Bug
Thirty-nine year old, Russell Kimble, was surprised at what he landed after a routine operation....
Excess Fat Riskier for South Asians - Study
Researchers in a recent study have found that some ethnic groups are at a greater risk of adding ......
Cholesterol
Cholesterol is produced by the body (liver) and is essential for normal body functioning....
Cholesterol - The Enigma Chemical
The word 'Cholesterol' rings danger bells as soon as it is mentioned. This important chemical is im...
Congenital Heart Disease
Heart diseases that are present at birth are called “ Congenital heart diseases”....
Diabetes - Self-Monitoring of Blood Glucose (SMBG)
Self-Monitoring Of Blood Glucose (SMBG) is one of the greatest advancements in the management of Di...
Diabetes and Exercise
Regular exercise especially in type II diabetes not only helps reduce the sugar but also reduces the...
Glycemic Index
GLYCEMIC INDEX (GI) is a scale which helps to rank carbohydrate- rich foods, depending on how they a...
Liposuction
Liposuction is a cosmetic procedure, which is used to suck out the excess or abnormal fat deposition...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use