About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Exceptional Role for Blood Formation Gene Recognized

by Medindia Content Team on September 19, 2007 at 7:31 PM
Exceptional Role for Blood Formation Gene Recognized

"We have identified a new pathway that is essential for blood stem cell turnover," said team leader Dr. Patricia Ernst, assistant professor of genetics and member of the Norris Cotton Cancer Center. The pathway could be exploited for treating a rare but aggressive infant leukemia, she added. These findings were reported in the September issue of Cell Stem Cell.

The investigators created a mouse model to track the function of a gene called MLL, which stands for Mixed Lineage Leukemia. The gene acts in bone marrow stem cells and controls key aspects of their growth to generate all the mature blood cells. If disrupted, it cannot work properly, and leukemia can ensue.

Advertisement

"MLL is the most commonly affected gene in childhood leukemia in children under a year of age; this particular type of leukemia has one of the worst success rates with the existing cancer therapies," said Ernst, who first helped clarify the role of MLL as a postdoctoral fellow at Harvard.

Many childhood leukemias result from mutations called translocations, where gene pieces on chromosomes accidentally relocate and misalign. In infant leukemia, the chromosome containing the MLL gene breaks within MLL and ends up fused to a different gene. MLL fusion genes likely co-opt normal MLL functions in blood cells, leading to the overproduction of white cells and leukemia.
Advertisement

Previous studies indicated that MLL is critical for embryonic blood stem cell development, but its role for the adult system was unknown. In their mouse model, the researchers found that bone marrow failure occurred as early as 14 days after they induced the experimental loss of MLL, demonstrating the crucial role of MLL as "necessary for both the development and maintenance of the body's blood supply," according to the researchers.

"We have shown that the adult blood-forming system depends on the continuous actions of MLL," Ernst said. Moreover, with the mouse model the scientists established to define normal MLL functions, they can begin exploring how to craft new anti-cancer treatments, she pointed out. "We and other groups can start designing targeted therapies that inhibit cancerous forms of MLL that occur in childhood leukemia and do not affect normal MLL function, which, based on our studies in mice, would be fatal for the patient."

Coauthors of the publication are DMS graduate students Craig D. Jude, Diyong Xu and Erika Artinger, research assistant Leslie Climer and Ernst's colleague Jill Fisher of the Dana Farber Cancer Institute, Boston.

This work was supported by funding from the National Institutes of Health, the Sydney Kimmel and V Foundations, and the American Cancer Society.

Source: Eurekalert
SPH/C
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Genetics & Stem Cells News

Gene Therapy Breaks Up New Dawn for Beta Thalassemia
Groundbreaking gene therapy for genetic beta thalassemia is now accessible as a treatment to a patient post-FDA approval.
Scientists Uncover Stem Cells in the Thymus for the First Time
Thymic stem cells actively participate in their environment by generating extracellular matrix proteins, essentially forming their own support system.
First Allogenic Stem Cell Transplant
Scientists aspire to utilize stem cell transplantation for pediatric patients grappling with blood-related conditions like aplastic anemia, and thalassemia.
Scientists Accomplish Complete Genome Sequencing of Y Chromosome
Researchers have sequenced male Y chromosomes, yielding a comprehensive blueprint of the entire human chromosome collection.
Cell Therapy for Cornea Damage Addressed by Patient's Own Stem Cells
CALEC (Cultivated autologous limbal epithelial cells) procedure for stem cell transplant in eye procedures is safe and feasible, showing improved corneal surfaces or vision.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Exceptional Role for Blood Formation Gene Recognized Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests