Enzyme Cascades Help Understand Sugar Metabolism

by Hannah Joy on  December 19, 2017 at 11:34 AM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

Understanding sugar metabolism, as to what happens to the sugar in the cell is more complicated than just a simple digestion, reveals a new study.
Enzyme Cascades Help Understand Sugar Metabolism
Enzyme Cascades Help Understand Sugar Metabolism

For sugars to metabolize and provide energy to the cells, a series of enzymes biological catalysts must each, in turn, break down a reactant. In this case, the researchers used glucose, the sugar found in corn syrup and one of the two sugars that result when table sugar - sucrose is broken down in the body.

Show Full Article


In this cascade, the first enzyme acts on the glucose supplied to the cell and the subsequent enzymes work on successive products. In the process, two adenosine triphosphate molecules ATP are consumed but four are produced. The hydrolysis of ATP powers many cellular processes to maintain the cell's viability. Similar enzyme cascades are responsible for many metabolic processes in the body.

Enzymes that participate in such reaction pathways have in some cases been shown to form intracellular, reversible complexes termed metabolons by Paul Srere (deceased), University of Texas Southwestern Medical School. Having the enzymes in proximity to one another facilitates the series of reactions they catalyze.

One such example is the purinosome discovered in Evan Pugh University Professor and Eberly Chair in Chemistry Stephan J. Benkovic's Lab at Penn State that consists of six enzymes involved in the biosynthesis of purines.

The researchers asked whether one of the factors contributing to metabolon formation could be a gradient of chemicals generated by the participating enzymes. They report their results in the issue of Nature Chemistry.

"We discovered some time ago that simple catalyst molecules such as enzymes will also chemotax up the gradient of a reactant," said Ayusman Sen, distinguished professor of chemistry, Penn State. "They move toward higher and higher concentrations of reactant."

The movement is termed chemotaxis, where individual molecules migrate along a concentration gradient of other molecules.

"All living things chemotax," said Sen. "If you are hungry and suddenly smell French fries, you will try to walk toward the fries. If the smell decreases, you will randomly turn to try to find the higher concentration of French-fry odor molecules until you are at the French-fry counter."

In their study, the researchers used only the first four enzymes of the glycolytic pathway hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. These four steps actually consume ATP. To study the movement of the enzymes, the researchers used fluorescent tagging of hexokinase and aldolase, the first and fourth enzymes in the pathway. Each was tagged with a different fluorescent dye so the movement of both enzymes could be followed.

They looked at three cases - the normal reaction where hexokinase phosphorylates glucose; the reaction of hexokinase with mannose, a sugar that binds more strongly but has a slower reaction rate; and finally with L-glucose, a form of glucose that is not used by hexokinase. The phosphorylation requires ATP. In the presence of phosphoglucose isomerase - the second enzyme and phosphofructokinase - the third enzyme, the reactant for aldolase is produced.

The researchers observed that the aldolase moves towards the hexokinase in their flow experiment, revealing that aldolase was chemotaxing up the reactant gradient produced by the functioning of the first three enzymes in the pathway. The chemotaxis was greatest with D-glucose, less with mannose and not observed with L-glucose.

Theoretical modeling of the enzyme movement qualitatively predicted the extent of enzyme movement.

The researchers also looked at whether chemotaxis of enzymes would occur in a model of the exceptionally crowded intracellular environment. They added a large molecular weight substance to simulate such crowding. Chemotaxis still occurred, but at a slower rate.

"Chemotaxis along a chemical gradient could be a factor in assembly of enzyme clusters such as metabolons," said Benkovic. "Other factors, such as noncovalent interactions would still be expected to contribute."

The resolution of the research instrument, however, was insufficient to demonstrate in this case that the four enzymes were assembling into a metabolon. The researchers observed the formation of large aggregates of enzymes, but could not demonstrate they were functioning metabolons.



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

Recommended Reading

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Premium Membership Benefits

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive