About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Does Opioid Receptors in the Brain Control Pain and Addictive Behavior?

by Medindia Content Team on October 16, 2007 at 10:47 AM
Font : A-A+

Does  Opioid Receptors in the Brain Control Pain and Addictive Behavior?

The opioid system controls pain, reward and addictive behaviors. Opioids exert their pharmacological actions through three opioid receptors, mu, delta and kappa whose genes have been cloned (Oprm, Oprd1 and Oprk1, respectively). Opioid receptors in the brain are activated by a family of endogenous peptides like enkephalins, dynorphins and endorphin, which are released by neurons. Opioid receptors can also be activated exogenously by alkaloid opiates, the prototype of which is morphine, which remains the most valuable painkiller in contemporary medicine.

By acting at opioid receptors, opiates such as morphine or heroin (a close chemically synthesized derivative) are extremely potent pain-killers, but are also highly addictive drugs.

Advertisement

To understand how molecules act in the brain and control behavior one can manipulate genes encoding these molecules in complex organisms, such as the mouse, and explore the consequences of these targeted genetic manipulations on animal responses in vivo.

The direct comparison of mice lacking each of the three opioid-receptor genes reveals that mu- and delta-opioid receptors act oppositely in regulating emotional reactivity. This highlights a novel aspect of mu- and delta-receptor interactions, which contrasts with the former commonly accepted idea that activation of mu- and delta-receptors produces similar biological effects (Traynor & Elliot, 1993).
Advertisement

Conclusion

The opioid system consists of three G protein-coupled receptors, mu-, delta-, and kappa, which are stimulated by a family of endogenous opioid peptides.

mu-opioid receptors are a key molecular switch triggering brain reward systems and potentially initiating addictive behaviors. The lack of mu-receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. This receptor therefore mediates therapeutic (analgesia) and adverse (addiction) activities of morphine, suggesting that further development of morphine-like compounds may necessarily lead to addictive analgesics.

Studies of mutant mice also suggest a role for mu-opioid receptors in diseases characterized by deficits in attachment behavior, such as autism or reactive attachment disorder. The data also highlight mice lacking mu-opioid receptors as a useful animal model to evaluate the consequences of deficits in the affiliative system during development and adulthood.

The rewarding properties of both opioid, as well as non-opioid drugs of abuse (cannabinoids, ethanol and nicotine, natural reinforcers) are abolished in the mu-receptor knockout mice. Blocking the mu-receptor may build a valuable approach for the treatment for drug abuse.

Beyond the rewarding aspect of drug consumption, pharmacological studies have also suggested a role for this receptor in the maintenance of drug use, as well as craving and relapse. As a consequence, expanding our understanding of mu-receptor function should greatly help to further our knowledge of the general mechanisms that underlie addiction.

Opiate addicts, who mainly abuse the mu-opioid agonist heroin, present a high incidence of depressive disorders that seem to contribute to the maintenance of the addictive state. Also, the treatment of chronic pain states frequently includes antidepressant therapy. Therefore, in addition to their potential analgesic activity, delta-agonists may be useful in improving emotional states and, more generally, may be considered in the future as an alternative therapy to alleviate affective disorders.

Source: Eurekalert
SPH/M
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Iodine Deficiency Disorder Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Drug Detox Thoracic Outlet Syndrome Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Recommended Reading
Research Explains Why Painkillers are Ineffective on Fibromyalgia
Patients with fibromyalgia were found to have reduced binding ability of a type of receptor in the ....
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Drug Detox
Drug detoxification (or drug detox) is a process that helps drug addicts to give up drugs with less ...
Iodine Deficiency Disorder
To control IDD, the ‘National Goiter Control Program (NGCP)’ was launched which was later renamed as...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Thoracic Outlet Syndrome
Thoracic outlet syndrome (TOS) is a rare condition that occurs when blood vessels or nerves become c...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use