About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Decoded: How the Smallest Particles 'Fall' in Love This Valentine's Day

by Dr. Trupti Shirole on February 14, 2016 at 3:12 AM
Font : A-A+

 Decoded: How the Smallest Particles 'Fall' in Love This Valentine's Day

'Love makes the world go round', and it may, in a sense, help us learn about other worlds. Here is a love story at the smallest scale imaginable- particles of light.

It is possible to have particles that are so intimately linked that a change to one affects the other, even when they are separated at a distance. This idea, called 'entanglement', is part of the branch of physics called quantum mechanics, a description of the way the world works at the level of atoms and particles that are even smaller.

Advertisement


Now, the technology used to study the 'love' between particles is also being used in research to improve communications between space and Earth.

"What is exciting is that in some sense, we're doing experimental philosophy. Humans have always had certain expectations of how the world works, and when quantum mechanics came along, it seemed to behave differently," said Krister Shalm, physicist with the National Institute of Standards and Technology (NIST), Boulder, Colorado.
Advertisement

In 1964, however, John Bell published the idea that any model of physical reality with such hidden variables also must allow for the instantaneous influence of one particle on another.

While Einstein proved that information cannot travel faster than the speed of light, particles can still affect each other when they are far apart according to Bell.

Scientists consider Bell's theorem an important foundation for modern physics.

"Our paper and the other two published last year show that Bell was right: any model of the world that contains hidden variables must also allow for entangled particles to influence one another at a distance," explained Francesco Marsili from NASA's Jet Propulsion Laboratory in Pasadena, California.

The design of the new experiment can potentially be used in cryptography - making information and communications secure - as it involves generating random numbers.

Cryptography is not the only application of this research. Detectors similar to those used for the experiment could eventually also be used for deep-space optical communication.

Information can never travel faster than the speed of light - Albert Einstein was right about that.

Marsili said, "But through optical communications research, we can increase the amount of information we send back from space. The fact that the detectors from our experiment have this application creates great synergy between the two endeavors."

The paper is published in the Physical Review Letters.

Source: IANS
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Nearly 1 In 5 UK Adults Experience Negative Responses to Sounds
How many people in the UK have misophonia? In a representative sample study, most people had at least some irritation upon hearing trigger sounds.
Why Are 1 in 8 Indians at Risk of Irreversible Blindness
Routine eye-checkups and mass screenings enable early diagnosis and treatment of glaucoma. Late-stage glaucoma diagnosis leads to blindness.
 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Decoded: How the Smallest Particles 'Fall' in Love This Valentine's Day Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests