CRISPR Gene Editing Method to Treat Duchenne Muscular Dystrophy

by Colleen Fleiss on  August 31, 2018 at 2:15 AM Genetics & Stem Cells News
RSS Email Print This Page Comment bookmark
Font : A-A+

In a large animal model, CRISPR genome editing was found to boost the expression of the dystrophin gene to levels that could be therapeutic in humans with Duchenne muscular dystrophy condition.
CRISPR Gene Editing Method to Treat Duchenne Muscular Dystrophy
CRISPR Gene Editing Method to Treat Duchenne Muscular Dystrophy

The study represents progress on the road to developing a therapy for Duchenne muscular dystrophy (DMD), though much work remains to be done. DMD is caused by a mutation in the gene for the protein dystrophin, important for muscle function, which prevents its expression.

A gene therapy approved for DMD patients can restore dystrophin expression to about 1% of normal levels. CRISPR/Cas9 approaches have been shown to improve dystrophin expression in mice and human cells, but a critical step toward clinical translation of this method is a demonstration of efficacy in large animal models. Here, seeking to provide such evidence, Leonela Amosaii, Eric Olson and colleagues used viral vectors to deliver CRISPR gene editing components directly into the muscles of two one-month-old beagles with a naturally occurring genetic mutation representative of DMD.

The animals' muscles were analyzed six weeks after treatment. Dystrophin expression was restored by up to 60% of normal levels in some muscle fibers, the authors say, and microscopic examination revealed an improvement in muscle integrity in the treated animals. In another experiment, the authors used the same viral vectors to deliver the gene editing components into the bloodstream of two beagles.

After eight weeks, the authors report, the animal receiving the highest dose showed a substantial boost in dystrophin expression: skeletal muscle had 25 to 70% of normal dystrophin levels and heart muscle had 92% of normal levels.

Preliminary analysis indicated that the treatment did not cause problematic immune system responses. Much work remains, however, before researchers could begin clinical evaluation of this approach in humans.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

More News on:

DNA Finger Printing Muscular Dystrophy Genetic Testing of Diseases Weaver Syndrome Dysarthria CRISPR 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive