About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Computer Model Could Be Used To Test New Sickle Cell Medications

by Jeffil Obadiah on August 23, 2019 at 4:39 PM
Font : A-A+

Computer Model Could Be Used To Test New Sickle Cell Medications

Sickle cell disease drugs could be tested using a new computer model which imitates the way red blood cells change their shape.

The model, described in a paper published in Science Advances, could be useful in the preclinical evaluation of drugs aimed at preventing the sickling process.

Advertisement


"There are currently only two drugs approved by the FDA for treating sickle cell disease, and they don't work for everyone," said Lu Lu, a Ph.D. student in the Division of Applied Mathematics at Brown and the study's co-lead author. "We wanted to build a model that considers the entire sickling process and could be used to quickly and inexpensively pre-screen new drug candidates."

Sickle cell disease is a genetic disorder that affects millions of people worldwide. The disorder causes red blood cells, which are normally soft and round, to become stiff, sticky, and sickle-shaped (a bit like a crescent moon). The irregularly shaped cells get stuck in blood vessels, causing pain, swelling, strokes, and other complications.
Advertisement

At the cellular level, sickle cell disease affects hemoglobin, a protein in red blood cells responsible for transporting oxygen. When oxygen-deprived, sickle cell hemoglobin clumps together inside the cell. The clumps then form long polymer fibers that push against the cell wall, stiffening the cells and forcing them out of shape.

George Karniadakis, a professor of applied mathematics at Brown and senior author of the new research, has worked for years to understand the disorder better. Most recently, he's worked with Lu and He Li, a research professor at Brown, to create detailed biophysical models of each stage of the sickling process, including a model of red blood cell function called OpenRBC and a supercomputer model of sickle cell fiber formation.

This new model combines and simplifies the previous models to create a single kinetic model of the entire sickling process. Using information gleaned from the detailed supercomputer models, the researchers were able to build a simplified version that captures all the important dynamics of the sickling process, yet can be run on a laptop.

To validate the model, the researchers showed that it could reproduce the outcomes of prior experiments in the lab and in people.

Because the dynamics of the sickling process can vary depending upon where in the body it's happening, researchers designed the model to simulate the sickling process in different organs. For example, because oxygen plays a key role in the process, sickling unfolds very differently in oxygen-rich areas like the lungs compared to more oxygen-poor areas like the kidneys. The model allows users to input parameters specific to the organ they're hoping to simulate. That same flexibility also enables to model to be run for individual patients who may have more or less severe versions of the disorder.

To test the potential effectiveness of drugs, the model allows users to input the mode of action by which a drug is presumed to work, and information is often gathered during preliminary lab studies. For example, if a drug is designed to boost the amount of healthy hemoglobin in red blood cells, that information can be used by the model to generate the effect on a large population of patient-specific or organ-specific red blood cells.

"Sometimes a drug can be designed to work on one parameter, but ends up having different effects on other parameters," Karniadakis said. "The model can tell if those effects are synergistic or whether they may negate each other. So the model can give us an idea of the overall effect of the drug."

The researchers are hopeful the model could be useful in identifying promising drug candidates.

"Clinical drug trials are very expensive, and the vast majority of them are unsuccessful," Karniadakis said. "The hope here is that we can do in silico trials to screen potential medications before proceeding to a clinical trial."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
First Dose of COVID-19 Vaccines May Improve Mental Health
Printed Temperature Sensors help with Continuous Temperature Monitoring
Health Benefits of Giloy
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Surgical Treatment Undescended Testicles Varicocele Testicle Pain - Symptom Evaluation Torsion Testis Orchidectomy Neck Cracking 

Recommended Reading
Sickle Cell Anemia
Sickle cell anemia (SCA) is a genetic blood disorder caused by abnormal inherited hemoglobin. ......
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, .....
Hemolytic Anemia
Hemolytic anemia, also known as hemolysis, is a condition where the destruction of red blood cells ....
Neck Cracking
Neck cracking or neck popping is caused by quick movements to loosen the ligaments and joints of the...
Testicle Pain - Symptom Evaluation
A sudden, severe pain in the testis may be due to testicular torsion. Testicles inside the scrotum a...
Torsion Testis
Torsion occurs when the testis spins, twisting the spermatic cord, causing reduced blood flow and te...
Undescended Testicles
An undescended testicle / testis is one that has not descended into the scrotal sac before birth. It...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use