About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

CNIO Study Chosen as Most Important Discovery in Regenerative Medicine

by Savitha C Muppala on December 14, 2013 at 11:47 PM
Font : A-A+

 CNIO Study Chosen as Most Important Discovery in Regenerative Medicine

The prestigious journal Nature Medicine has taken a look at the year and chosen one of the Spanish National Cancer Research Centre's (CNIO) studies as the most important in the stem cell category for its special December edition. The edition highlights eight categories, including, as well as stem cells, immunology, cardiovascular disease or neuroscience.

The study in question, led by Manuel Serrano, the director of CNIO's Molecular Oncology Programme, was published last September in the journal Nature with the title Reprogramming in vivo produces teratomas and iPSCs with totipotency features.

Advertisement

The most important milestone achieved by the research was demostrating that cells from a variety of tissues, such as that of intestine, stomach, kidney or pancreas, can be turned into embryonic stem cells. To do so, CNIO researchers used the technique developed by the scientist Shinya Yamanaka (2012 Nobel Prize for Medicine) to obtain embryonic stem cells in vitro.

"Being able to apply this technique directly to tissues from living organisms was a big surprise, as it was thought in vivo conditions would not allow for this extent of cellular plasticity", says Serrano.
Advertisement

The journal Nature Medicine highlights that: "The significance of this work goes beyond the generation of a mouse with reprogrammable tissue", adding that "stem cells created in vivo reached a totipotent-like state and a plasticity that surpasses that of embryonic stem cells and other iPSCs made in a dish".

In this context, the cells obtained in Serrano's laboratory were even capable of forming pseudo-embryonic structures and extra-embryonic tissues such as the yolk sac.

The researchers emphasise that practical applications might yet be some way off, but admit it could change the direction of stem cell research and its applications for regenerative medicine and tissue engineering.

"The in vivo reprogramming achieved this year may bring researchers one step closer to protocols that can accomplish controlled tissue reprogramming", says the journal in its conclusion on CNIO's work.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Printed Temperature Sensors help with Continuous Temperature Monitoring
Health Benefits of Giloy
Breast Cancer Awareness Month 2021 - It's time to RISE
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Tissue Engineering and Regenerative Medicine 

Recommended Reading
Human Stem Cells Predict Efficacy of Alzheimer Medication
Why do certain Alzheimer medications not work in clinical trials in humans but work in animal ......
UCLA Researchers Figure Out How Prostate Cancer Stem Cells Evolve
How prostate cancer stem cells evolve as the disease progresses was discovered by UCLA ......
Researchers Accelerate Aging in Stem Cells to Study Neurodegenerative Diseases
Stem cells hold promise for understanding and treating neurodegenerative diseases, but till now ......
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use