Human Chronobiome study may help in the development of precision medicine by understanding the time of drug delivery.
Circadian misalignment using forced desynchrony has shown an increase in cardiovascular risk factors in humans. The molecular circadian clock coordinates our body rhythms to environmental cues, such as light. The findings of this study are further discussed in Scientific Reports journal.
‘The molecular circadian clock coordinates body's rhythms; they are fine-tuned by environmental cues, such as light. Several clock-determined traits such as blood pressure and cortisol were found to be consistent with these time-dependent patterns.’
A study reported in Scientific Reports set this approach on its head. Researchers from the Perelman School of Medicine at the University of Pennsylvania instead studied six healthy young male volunteers to collect physiological information as they went about their normal daily lives. The Penn study measured thousands of physiological indicators and used wearable devices and smartphone apps to gather part of it."We integrated data from remote sensors, wearables, and physiological samples to see how feasible it would be to detect an oscillatory phenotype, the chronobiome, of an individual, despite the 'noise' of everyday life," said first author Carsten Skarke, MD, a research assistant professor of Medicine.
"We essentially defined each participant's 'chronobiome' -a collection of their physiological traits in a 24-hour rhythmic pattern - as a reflection of their time-dependent deep phenotype under free-ranging conditions," said senior author Garret FitzGerald, MD, director of the Institute for Translational Medicine and Therapeutics, who coined the term.
The molecular circadian clock coordinates the body's rhythms fine-tuned by environmental cues, such as light, to the 24-hour solar cycle. A master clock in the brain communicates that control to molecular clocks in peripheral tissues. In humans, many aspects of physiology, including body temperature, levels of blood glucose, insulin, hormones, and neurotransmitters vary on a daily cycle.
In their study, the majority - 62 percent - of sensor readouts showed time-specific variability, including the expected variation in blood pressure, heart rate, and cortisol. "We saw that several clock-determined traits such as blood pressure and cortisol were consistent with time-dependent patterns in the volunteers' physical activity, mobility, communication, and environmental cues such as exposure to ambient light," Skarke said.
Advertisement
"We need a baseline of healthy chronobiomes to be able to detect and interpret discordant data collected from patients before we can think of tailoring drug regimens for time-specific diseases," Skarke said. Despite the long-recognized, time-dependent variation in the effectiveness of many commonly used drugs, there has been little use of chronotherapy in clinical practice.
Advertisement
"Now, we have proof-of-concept to scale up our work to characterize the human chronobiome in a larger population of 'free-living' people," FitzGerald said.
The researchers emphasize the utility of a detailed characterization of the chronobiome and how it might be altered under stressful conditions -- bacterial infection, for example.
"We plan to scale up to 200 volunteers of both sexes and different ages, measure change over seasons, and study what changes are evoked in the chronobiome as a response to metabolic, cardiovascular, and inflammatory stressors, as well as extend our approach to study diseases associated with disrupted clocks," said Skarke.
This approach is a necessary prelude to detect differences in the chronobiome to ultimately find therapeutic value in patients with circadian time-dependent diseases, such as non-dipping hypertension, nocturnal asthma, depression, and night-eating syndrome.
The Penn team now has online pilot studies with surgical, HIV, heart disease, and asthma patients, as well as shift workers.
Skarke and FitzGerald recognize the potential of chronotherapy becoming integrated into clinical care in many ways. For instance, if it's assumed that a drug should be taken at bedtime, what does that mean for an individual chronotype? Should it be a different regimen for morning larks versus night owls?
They propose that patients' chronobiomes could be characterized using a wearable, their cell phone, and biomarkers from their blood, urine, saliva, and feces. Then a drug could be dosed according to an individual's chronobiome. Indeed, earlier research at Penn identified that a majority of prescription drugs act on enzymes and proteins that oscillate over 24 hours.
Source-Eurekalert