About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Chronic Pain Relief: New Target Identified

by Colleen Fleiss on March 12, 2019 at 3:03 AM
Chronic Pain Relief: New Target Identified

A potential novel target for chronic pain treatment has been discovered by a research group at Hiroshima University. Further research using this receptor could lead to new, more effective drugs to use in pain-relieving treatment for chronic pain.

Chronic pain mechanisms are complicated, which is one of the reasons why pain management is so difficult, explains Professor Norimitsu Morioka of the Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University. This difficulty decreases the quality of life of patients that, in many cases, can suffer from constant pain with little to no relief. General-purpose pain-relieving medication is often ineffective. Even morphine, possibly the best painkiller according to Assistant Professor Yoki Nakamura, also of the Department of Pharmacology, can fail to inhibit pain in cancer patients.

Advertisement


"Chronic pain is increasing worldwide [...] associated with increasing population," warns Morioka. The increasing number of sufferers of chronic pain means the establishment of new therapeutics is urgent, hence why the results of these types of studies can have important consequences on healthcare for these patients.

Previous research had shown that activating a type of cell receptor (REV-ERBs) that sends chemical signals inside the cell to block the production of certain genes regulates pain-causing and inflammatory molecules inside the body. Such research had shown that a molecule used to 'turn on' the REV-ERBs had decreased the production of inflammatory molecules in immune cells but "Nobody checked the effect of REV-ERBs agonist [stimulator] on nociceptive behaviors [pain reactions] or chronic pain so first we checked the effect of REV-ERBs agonist on chronic pain," explains Nakamura.
Advertisement

Until now, research has also only looked into one type of pain model at a time. Morioka elaborates that "I think it is not enough to reduce by one target [...] I think it is important to cover a lot of molecules mediating chronic pain," and REV-ERBs seems to be a fitting target "So it is very exciting."

The research group applied this knowledge to determine if activating the nuclear receptor REV-ERBs in specialized spinal cord cells (astrocytes) results in pain relief in mice. The team treated mice with differing levels of pain sensitivity with molecules that turned on REV-ERBs. The molecules studied can be easily found in today's pain-relieving drugs according to the team. To test whether there was a notable effect on pain; mice were touched with a filament on their hind paw. Pain was recorded when mice raised their paw away from the filament. Light touches made mice with chronic pain react whereas 'normal' mice only moved when the force was increased. Mice with chronic pain when treated with a REV-ERBs stimulator did not react to the lighter touches (depending on the type of chronic pain they had). Through these observations, the research group concluded they did not feel as much pain as the untreated mice with the same type of chronic pain.

Based on these results, the researchers believe that this new target for pain relief could benefit many types of chronic pain sufferers. They plan to perform further research and drug screening experiments to develop new drugs for various types of chronic pain relief.

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Chronic Pain Relief: New Target Identified Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests