About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Cholesterol 'Rafts' May Now Help Treat Cancer

by Enozia Vakil on April 5, 2013 at 11:12 AM
 Cholesterol 'Rafts' May Now Help Treat Cancer

Nucleic acids like DNA, siRNA and miRNA, if pass through our cell membrane, they can reprogram cancer cells. A University of Colorado Cancer Center study published today in the journal Therapeutic Delivery shows that cholesterol "rafts" can shepherd genetic payloads into cancer cells.

"There are many promising therapeutic applications for nucleic acids, but because they can't diffuse across cell membranes on their own, delivery to cancer cells has been a major challenge. Our method is a promising way to get these drugs inside cancer cells where they can do their work," says Tom Anchordoquy, PhD, investigator at the CU Cancer Center and professor at the Skaggs School of Pharmacy and Pharmaceutical Sciences.

Advertisement

The technology works by exploiting a relatively new understanding of what cell membranes look like.

"It used to be that we thought about membrane proteins floating around in a disorganized two-dimensional soup. Now we know that different functions are clustered into domains we call rafts," Anchordoquy says. Imagine these rafts like continents of the Earth, each presenting its own plant species. Perhaps a raft with palm trees but not spruce unlocks passage into a cancer cell?
Advertisement

Anchordoquy and colleagues aren't the first to imagine particle-payload delivery systems, but when you engineer and introduce a non-rafted particle into the blood, it quickly becomes coated with all sorts of blood proteins that can cover the membrane proteins ("palm trees") needed to unlock passage into cancer cells. However, blood proteins don't bind to rafts and so particles with rafts continue to present the engineered bits rather than being silted over by the body's proteins. Anchordoquy and colleagues make these rafts by boosting the concentration of cholesterol while forming particles for drug delivery.

"See, rafts are made of 30-50 percent cholesterol, about five times the level in the surrounding lipid. We'd shown in earlier experiments that rafts create more delivery of payload materials into cancer cells, but there was always the outside chance that the benefit was due simply to higher levels of cholesterol and not to the action of the rafts, themselves," Anchordoquy says.

The current study found an elegant fix: with longer tails on lipid molecules, particles will form rafts at lower cholesterol concentrations. The team used long-tailed lipids to form their particles, allowing them to keep cholesterol concentration low while showing the same benefit in delivering genes into cancer cells. This demonstrates that it is indeed the raft that facilitates delivery.

"We've used these synthetic rafts to deliver a gene inside these cells that makes the cells fluoresce," Anchordoquy says. "That way we can see how much payload went in. But because we're talking particles and not just individual molecules, in the future we can send other cargo like microRNA's that can reprogram a cell's gene expression."

Anchordoquy is working with colleagues at the CU Cancer Center to match his delivery system with a potent payload, and welcomes collaboration outside the center as well.



Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Cancer News

Personalized Vaccine and T Cell Therapy for Ovarian Cancer Patients
The combination of the personalized cancer vaccine with ACT led to ovarian cancer control in few patients within a span of three months, stated study results.
Kinase-Targeted Therapy Revolutionizes Colorectal Cancer Care
Uncovering key kinases in tumor growth and invasion is crucial for improving targeted therapies in advanced-stage colorectal cancer.
Novel Photo-Oxidation Therapy Holds Promise for Anticancer Treatment
The study findings validate metal-enhanced photo-oxidation for future metal-based anticancer drugs.
Mutations in 11 Genes Linked to Aggressive Prostate Cancer
Mutations in 11 genes are linked to aggressive forms of prostate cancer, which may present novel therapeutic and therapy options.
Link Between Poor Oral Health and Head & Neck Cancer Survival Uncovered
Improved oral health, as indicated by the count of natural teeth and dental appointments preceding the diagnosis, correlated with enhanced head and neck cancer survival rates.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Cholesterol 'Rafts' May Now Help Treat Cancer Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests