Gatti's lab specializes in studying ataxia-telangiectasia (A-T), a progressive neurological disease that strikes young children, often killing them by their late teens or early 20s.
For four years, the UCLA Molecular Shared Screening Resources Center of the campus'' California NanoSystems Institute has screened 35,000 chemicals, searching for those that ignore premature stop signals.
First author Liutao Du developed the screening technology in Gatti''s laboratory.
"Of the dozens of active chemicals we discovered, only two were linked to the appearance and function of ATM, the protein missing from the cells of children with A-T," said Du. "These two chemicals also induced the production of dystrophin, a protein that is missing in the cells of mice with a nonsense mutation in the muscular dystrophy gene."
The UCLA team is optimistic that its discovery will aid pharmaceutical companies in creating drugs that correct genetic disorders caused by nonsense mutations. This could affect one in five patients with most genetic diseases, including hundreds of thousands of people suffering from incurable diseases. Because nonsense mutations can lead to cancer, such drugs may also find uses in cancer treatment.
Gatti's lab is funded by the Los Angeles-based Ataxia-Telangiectasia Medical Research Foundation, the National Institutes of Health and the New York-based Ataxia-Telangiectasia Ease Foundation.
Source: Newswise
LIN