About Careers MedBlog Contact us

Certain Host Cell Environment Make Malaria Parasites Resistant to Drugs

by Shirley Johanna on June 6, 2015 at 2:39 PM
Font : A-A+

Certain Host Cell Environment Make Malaria Parasites Resistant to Drugs

Highly resistant malaria parasite infects red blood corpuscles to defend itself against the impact of anti-malarial drugs.

Of the two species of Plasmodium parasites commonly infecting humans, P. vivax grows exclusively in immature red blood cells called reticulocytes. P. falciparum can infect reticulocytes, but it grows primarily in mature red blood cells (called erythrocytes) which make up 99% of red cells in circulation.


The study shows that the different metabolic states of these human host cells provide different growth conditions for the respective parasites and warn that, as a consequence, drugs that work against one Plasmodium species might fail to be effective against the other.

After their birth in the bone marrow, red blood cells undergo a number of changes to develop into highly specialized oxygen transporters.

They expel their nucleus (with its DNA content) before they are released into the blood as reticulocytes.

As they mature they get rid of many of their other organelles as well, until they are disk-shaped cells full of hemoglobin, a red protein (which gives blood its color) designed to carry oxygen.

To address whether the two classes of host red blood cells offer different resources for parasite survival, and whether these resources could influence anti-malarial drug efficacy, researchers undertook a comprehensive biochemical analysis of the metabolites present in reticulocytes on one hand and in mature erythrocytes on the other.

They found that reticulocytes contain elevated levels of many metabolites that could potentially be scavenged by the invading and growing malaria parasite.

Researchers suggest that the availability of the reticulocyte metabolome might reduce or block the efficacy of anti-malarial drugs that target parasite metabolism.

Furthermore reticulocyte resident P. falciparum may enjoy similar protection, giving rise to the possibility that infections could re-emerge.

The study is published in PLOS Pathogens.

Source: ANI


Recommended Reading

Latest Research News

What Are the Effects of T Cells on Blood Pressure and Inflammation?
A new study explored the link between T immune cells in ill patients and mortality risk.
How Does a New Procedure Help Patients Avoid Leg Amputation?
Limb savage procedure benefits patients with severe vascular disease who are at risk for amputation of their limbs.
Omega-3 Can Save Alzheimer's Patients from Vision Loss
Does omega-3 help Alzheimer's patients? A new form of omega-3 helped restore specific markers of eye health in mice bred with aspects of early-onset Alzheimer's disease.
Why Is Asthma Linked to Increased Risk of Osteoarthritis?
Drugs used to inhibit the physiological responses for allergic reactions lessen osteoarthritis risk, revealed research.
 Experiments on Child Brain Tumour and Muscle Ageing Heading to Space
The International Space Station will be used to carry out experiments seeking to improve understanding of incurable child brain tumors and the muscle aging process.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Certain Host Cell Environment Make Malaria Parasites Resistant to Drugs Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests