Caregiving Robots With 3D Printers Created

by Colleen Fleiss on  April 10, 2019 at 9:04 AM Senior Health News
RSS Email Print This Page Comment bookmark
Font : A-A+

A new design method developed by Martinez and other Purdue University researchers was found to show promise in enabling the efficient design and fabrication of soft robots using a 3D printer. The technology is published in the April 8 edition of Advanced Functional Materials. A video showing the technology is available at https://www.youtube.com/watch?v=nDpzuLbtzDM.
Caregiving Robots With 3D Printers Created
Caregiving Robots With 3D Printers Created

The world's elderly population is booming. The number of older people -- those age 60 years or older -- is expected to more than double by 2050 and is growing faster than all younger age groups across the globe.

This trend comes with an increasing demand for caregivers capable of providing 24-hour care, not only at hospitals or nursing homes, but also at private homes and apartments.

Already, caregiving robots are programmed to ask questions a nurse would ask and can monitor patients for falls. These robotic assistants are expected to become increasingly marketable and reach 450,000 by 2045 because of the expected caregiver shortage in the United States.

"Unfortunately, the external hard structure of current caregiving robots prevents them from a safe human-robot interaction, limiting their assistance to mere social interaction and not physical interaction," said Ramses Martinez, an assistant professor in the School of Industrial Engineering and in the Weldon School of Biomedical Engineering in Purdue's College of Engineering. "After all, would you leave babies or physically or cognitively impaired old people in the hands of a robot?"

Recent advances in material science have enabled the fabrication of robots with deformable bodies or the ability to reshape when touched, but the complex design, fabrication, and control of soft robots currently hinders the commercialization of this technology and its use for at-home applications.

The design process involves three steps. First, a user makes a computer-aided design file with the shape of the robot. The user then paints the CAD file to show which directions the different joints of the soft robot will move. A fast computer algorithm takes a few seconds to convert the CAD model into a 3D architected soft machine (ASM) that can be printed using any conventional 3D printer.

The architected soft machines move like humans, except instead of muscles they rely on miniaturized motors that pull from nylon lines tied to the ends of their limbs. They can be squeezed and stretched to more than 900 percent of their original length. A video is available at https://www.youtube.com/watch?v=V0L0lP0g4tg.

"The capability of ASMs to change their body configuration and gait to adapt to a wide variety of environments has the potential to not only improve caregiving but also disaster-response robotics."

A video is available at https://www.youtube.com/watch?v=q9M4q9OQhQE and more videos can be found on the research team's YouTube channel.

The technology is patented through the Purdue Office of Technology Commercialization. The researchers are looking for partners to test and commercialize their technology.

Their work aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements in artificial intelligence and health as part of Purdue's 150th anniversary. Those are two of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

More News on:

Caregivers 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive