Our brain adapt to what we memorize and learn throughout our life

These results, published in Current Biology, will lead to a better understanding of neurodegenerative and neurodevelopmental diseases.The central nervous system excitatory synapses – points of contact between neurons that allow them to transmit signals – are highly dynamic structures, which are continuously forming and dissolving. They are surrounded by non-neuronal cells, or glial cells, which include the distinctively star-shaped astrocytes.
These cells form complex structures around synapses, and play a role in the transmission of cerebral information which was widely unknown before.
Plasticity and Stability By increasing neuronal activity through whiskers stimulation of adult mice, the scientists were able to observe, in both the somatosensory cortex and the hippocampus, that this increased neuronal activity provokes an increase in astrocytes movements around synapses.
The synapses, surrounded by astrocytes, re-organise their architecture, which protects them and increases their longevity. The team of researchers led by Dominique Muller, Professor in the Department of Fundamental Neuroscience of the Faculty of Medicine at UNIGE, developed new techniques that allowed them to specifically "control" the different synaptic structures, and to show that the phenomenon took place exclusively in the connections between neurons involved in learning.
"In summary, the more the astrocytes surround the synapses, the longer the synapses last, thus allowing learning to leave a mark on memory," explained Yann Bernardinelli, the lead author on this study. This study identifies a new, two-way interaction between neurons and astrocytes, in which the learning process regulates the structural plasticity of astrocytes, who in turn determine the fate of the synapses.
Advertisement
Advertisement