Furin, an enzyme present in the bone activates the hormone osteocalcin. This hormone regulates the appetite and controls blood glucose levels, reveals a new study. The researcher Mathieu Ferron at the Montreal Clinical Research Institute (IRCM) and professor at Université de Montréal's Faculty of Medicine has spent the last decade studying a hormone called osteocalcin. Produced by our bones, osteocalcin affects how we metabolize sugar and fat.
‘Absence of furin enzyme in the bones decreases the production of insulin and thereby increases the levels of blood glucose in the body.’
In a recent paper in The Journal of Clinical Investigation, Ferron's team unveiled a new piece of the puzzle that explains how osteocalcin works. The discovery may someday open the door to new ways of preventing type 2 diabetes and obesity.Bone: An endocrine organ
It has long been known that hormones can affect bones. "Just think about how women are more prone to suffer from osteoporosis when they reach menopause because their estrogen levels drop," said Ferron, director of the IRCM's Integrative and Molecular Physiology Research Unit.
But the idea that bone itself can affect other tissues took root only a few years ago with the discovery of osteocalcin. Thanks to this hormone, produced by bone cells, sugar is metabolized more easily.
"One of osteocalcin's functions is to increase insulin production, which in turn reduces blood glucose levels," Ferron explained. "It can also protect us from obesity by increasing energy expenditure."
Advertisement
Hormone scissors
Advertisement
"When it is first produced in osteoblasts, osteocalcin is in an inactive form," Ferron noted. "What interested us was understanding how osteocalcin becomes active so as to be able to play its role when released into the blood."
The IRCM lab demonstrated that an enzyme, which acts like molecular scissors, is required. Inactive osteocalcin has one more piece than active osteocalcin. The researchers examined in mice the different enzymes present in cells where osteocalcin was produced that could be responsible for snipping off the piece in question.
Ferron's team succeeded in identifying it: it's called furin. Furin causes osteocalcin to become active and the hormone is then released into the blood.
"We demonstrated that when there was no furin in bone cells, inactive osteocalcin built up and was still released, but this led to an increase in blood glucose levels and a reduction in energy expenditure and insulin production," Ferron said.
Deleting these "scissors" also had an unexpected effect: it reduced the mice's appetite. "We're confident that the absence of furin was the cause," Ferron said.
Indeed, his team demonstrated that osteocalcin itself has no effect on appetite. "Our results suggest the existence of a new bone hormone that controls food intake," Ferron said.
"In future work, we hope to determine whether furin interacts with another protein involved in appetite regulation."
Source-Eurekalert