About My Health Careers Internship MedBlogs Contact us

Biomarker for a Rare Pediatric Disorder Identified

by Hannah Joy on February 26, 2018 at 1:21 PM
Font : A-A+

Biomarker for a Rare Pediatric Disorder Identified

New insights have been discovered into biological mechanisms of a rare genetic disorder in childhood that can help in treating childhood neurogenetic disorders.

The research, which found abnormalities in a biological waste-disposal process called autophagy, links the mechanism underlying rare pediatric neurogenetic disorders to more common neurodegenerative disorders, such as Huntington's or Parkinson's disease.


"We showed that this rare neurological disorder disrupts autophagy, which plays a role in many neurodegenerative disorders in both children and adults," said study leader Xilma R. Ortiz-Gonzalez, MD, PhD, a pediatric neurogeneticist at Children's Hospital of Philadelphia (CHOP).

She added, "We identified a urine test that can serve as a biomarker of this specific pediatric disorder, which we call TBCK-encephaloneuropathy. We want to build a patient registry and eventually use this biomarker to test if it could help monitor response to treatment, with the long-term aim of developing a precision medicine treatment for this devastating disease."

The study team reported its findings online in Annals of Neurology.

TBCK-encephaloneuropathy (TBCKE) is caused by a mutation in the TBCK gene, which has been a focus of previous research by CHOP scientists and others.

Although TBCK mutations have varied effects, including a broad range of intellectual disabilities, motor impairments, autistic features, and brain abnormalities, TBCKE is a severe subtype, with progressive neurodegeneration involving the brain as well as progressive muscle weakness.

The team also seeks to investigate why some children with TBCK mutations can have much milder presentations than others, and whether this provides a clue to understanding differences in the underlying mechanisms of the disease.

The current study reported on a cohort of eight unrelated boys, ranging from age 9 to 14 years, all of Puerto Rican descent.

All had a mutation, called the Boricua mutation, at the same location on the TBCK gene--p.R126X. They all share a very severe presentation, including profound intellectual disability (ID), epilepsy, low muscle tone, and progressive dysfunction in both the central and peripheral nervous systems.

By adolescence, the patients had chronic respiratory failure caused by their progressive neuromuscular weakness.

Scientists already knew that the TBCK protein, coded for by the gene with the same name, regulates signals along the mTOR biological pathway. Abnormal mTOR signals occur in epilepsy, autism, ID and other neurological conditions.

One key role for mTOR signaling is in autophagy, the normal cleanup process in which cells dispose of damaged proteins, lipids, and other biological objects.

When autophagy doesn't function normally, neurodegenerative diseases may result. Researchers in the current study found that the Boricua mutation leads to abnormal autophagy, which could be why this specific cohort of patients with TBCKE have a neurodegenerative course.

The study team found a potential biomarker for TBCKE abnormal levels of chemicals called oligosaccharides in the patients' urine.

Further studies will determine if oligosaccharide levels could become a simple laboratory test to help diagnose the disorder. Notably, oligosaccharide levels improved when the researchers added the amino acid leucine to the patients' cells in laboratory cultures.

"Leucine activates mTOR signaling that was disrupted by the mutation, so this finding suggests that leucine might offer some improvement in disease symptoms if used in patients," said Ortiz-Gonzalez. This is consistent with previous CHOP research in a TBCK-related disease, which showed potential therapeutic benefits in using leucine in affected cells.

Ortiz-Gonzalez and her CHOP collaborators are continuing to investigate the biology of TBCKE, while working to establish a patient registry of children with this rare disorder.

Her eventual goal is to identify more patients and perform studies that could set the stage for a clinical trial to test leucine or a similar compound as a personalized treatment for this severe childhood disease.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Cervical Cancer Awareness Month 2022
Ultra-Low-Fat Diet
Goji Berries May Protect Against Age-Related Vision Loss
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Amyotrophic Lateral Sclerosis (ALS) Pediatric Pyloric Stenosis Loss of Taste Acute Coronary Syndrome 

Recommended Reading
Exome Sequencing More Efficient to Diagnose Neurogenetic Disorders
Exome sequencing is more efficient and less costly than the type of genetic testing that has been .....
Researchers Establish Link Between Circadian Clock and Angelman Syndrome
Angelman syndrome is a debilitating genetic disorder that occurs in more than one in every 15,000 .....
Acute Coronary Syndrome
Acute coronary syndrome (ACS) is a sudden, acute life-threatening condition caused by a dramatic red...
Amyotrophic Lateral Sclerosis (ALS)
Find out more about the degenerative disease- Amyotrophic lateral sclerosis....
Loss of Taste
Symptom of loss of taste usually occurs in combination with loss of smell and can be complete loss o...
Pediatric Pyloric Stenosis
Pyloric stenosis in a child is narrowing of the pylorus due to which the milk cannot pass into the s...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)